Taylor Zeike, Miller Karol
School of Mechanical and Materials Engineering, The University of Western Australia, 35 Stirling Highway, Crawley/Perth, WA 6009, Australia.
J Biomech. 2004 Aug;37(8):1263-9. doi: 10.1016/j.jbiomech.2003.11.027.
This paper presents results from a finite element study of the biomechanics of hydrocephalus, with special emphasis on a reassessment of the parenchyma elastic modulus. A two-dimensional finite element model of the human brain/ventricular system is developed and analysed under hydrocephalic loading conditions. It is shown that the Young's modulus of the brain parenchyma used in previous studies (3000-10000 Pa) corresponds to strain rates much higher than those present in hydrocephalic brains. Consideration of the brain's viscoelasticity leads to the derivation of a considerably lower modulus value of approximately 584 Pa.
本文介绍了一项关于脑积水生物力学的有限元研究结果,特别强调了对脑实质弹性模量的重新评估。建立了一个人脑/脑室系统的二维有限元模型,并在脑积水负荷条件下进行了分析。结果表明,先前研究中使用的脑实质杨氏模量(3000 - 10000帕斯卡)对应的应变率远高于脑积水患者大脑中的应变率。考虑到大脑的粘弹性,得出了一个低得多的模量值,约为584帕斯卡。