Suppr超能文献

加拿大西北地区耶洛奈夫市巨人矿中水体与砷的来源及循环

Sources and circulation of water and arsenic in the Giant Mine, Yellowknife, NWT, Canada.

作者信息

Clark Ian D, Raven Kenneth G

机构信息

Department of Earth Sciences University of Ottawa 140 Louis Pasteur Ottawa ON K1N 6N5 Canada.

出版信息

Isotopes Environ Health Stud. 2004 Jun;40(2):115-28. doi: 10.1080/10256010410001671014.

Abstract

Recovery of gold from arsenopyrite-hosted ore in the Giant Mine camp, Yellowknife, NWT, Canada, has left a legacy of arsenic contamination that poses challenges for mine closure planning. Seepage from underground chambers storing some 237,000 tonnes of arsenic trioxide dust, has As concentrations exceeding 4000 ppm. Other potential sources and sinks of As also exist. Sources and movement of water and arsenic are traced using the isotopes of water and sulphate. Mine waters (16 ppm As; AsV/AsIII approximately 150) are a mixture of two principal water sources--locally recharged, low As groundwaters (0.5 ppm As) and Great Slave Lake (GSL; 0.004 ppm As) water, formerly used in ore processing and discharged to the northwest tailings impoundment (NWTP). Mass balance with delta18O shows that recirculation of NWTP water to the underground through faults and unsealed drillholes contributes about 60% of the mine water. Sulphate serves to trace direct infiltration to the As2O3 chambers. Sulphate in local, low As groundwaters (0.3-0.6 ppm As; delta34SSO4 approximately 4% and delta18OSO4 approximately -10%) originates from low-temperature aqueous oxidation of sulphide-rich waste rock. The high As waters gain a component of 18O-enriched sulphate derived from roaster gases (delta18OSO4) = + 3.5%), consistent with their arsenic source from the As2O3 chambers. High arsenic in NWTP water (approximately 8 ppm As; delta18OSO4 = -2%) derived from mine water, is attenuated to close to 1 ppm during infiltration back to the underground, probably by oxidation and sorption by ferrihydrite.

摘要

加拿大西北地区耶洛奈夫市巨人矿场中,从含毒砂矿石中回收黄金的做法留下了砷污染问题,这给矿山关闭规划带来了挑战。储存了约23.7万吨三氧化二砷粉尘的地下洞穴发生渗漏,砷浓度超过4000 ppm。此外,还存在其他潜在的砷源和砷汇。利用水和硫酸盐的同位素追踪水和砷的来源及移动情况。矿井水(砷含量16 ppm;五价砷/三价砷约为150)是两种主要水源的混合体——本地补给的低砷地下水(砷含量0.5 ppm)和大奴湖(GSL;砷含量0.004 ppm)水,大奴湖水曾用于矿石加工并排放至西北尾矿库(NWTP)。通过δ18O进行的质量平衡表明,NWTP水通过断层和未封闭钻孔回流至地下,占矿井水的约60%。硫酸盐用于追踪直接渗入三氧化二砷洞穴的情况。本地低砷地下水中的硫酸盐(砷含量0.3 - 0.6 ppm;δ34SSO4约为4%,δ18OSO4约为 - 10%)源自富含硫化物的废石的低温水相氧化。高砷水中含有一部分源自焙烧炉气体的富含18O的硫酸盐(δ18OSO4 = + 3.5%),这与它们的砷源来自三氧化二砷洞穴相符。NWTP水中源自矿井水的高砷(约8 ppm砷;δ18OSO4 = - 2%)在渗入地下的过程中衰减至接近1 ppm,可能是由于被水铁矿氧化和吸附。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验