Verdejo-Torres Odette, Klein David C, Novoa-Aponte Lorena, Carrazco-Carrillo Jaime, Bonilla-Pinto Denzel, Rivera Antonio, Bakhshian Arpie, Fitisemanu Fa'alataitaua M, Jiménez-González Martha L, Flinn Lyra, Pezacki Aidan T, Lanzirotti Antonio, Ortiz Frade Luis Antonio, Chang Christopher J, Navea Juan G, Blaby-Haas Crysten E, Hainer Sarah J, Padilla-Benavides Teresita
Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, Connecticut, United States of America.
Department of Biological Sciences. University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America.
PLoS Genet. 2024 Dec 5;20(12):e1011495. doi: 10.1371/journal.pgen.1011495. eCollection 2024 Dec.
Copper (Cu) is essential for respiration, neurotransmitter synthesis, oxidative stress response, and transcription regulation, with imbalances leading to neurological, cognitive, and muscular disorders. Here we show the role of a novel Cu-binding protein (Cu-BP) in mammalian transcriptional regulation, specifically on skeletal muscle differentiation using murine primary myoblasts. Utilizing synchrotron X-ray fluorescence-mass spectrometry, we identified murine cysteine-rich intestinal protein 2 (mCrip2) as a key Cu-BP abundant in both nuclear and cytosolic fractions. mCrip2 binds two to four Cu+ ions with high affinity and presents limited redox potential. CRISPR/Cas9-mediated deletion of mCrip2 impaired myogenesis, likely due to Cu accumulation in cells. CUT&RUN and transcriptome analyses revealed its association with gene promoters, including MyoD1 and metallothioneins, suggesting a novel Cu-responsive regulatory role for mCrip2. Our work describes the significance of mCrip2 in skeletal muscle differentiation and metal homeostasis, expanding understanding of the Cu-network in myoblasts. Copper (Cu) is essential for various cellular processes, including respiration and stress response, but imbalances can cause serious health issues. This study reveals a new Cu-binding protein (Cu-BP) involved in muscle development in primary myoblasts. Using unbiased metalloproteomic techniques and high throughput sequencing, we identified mCrip2 as a key Cu-BP found in cell nuclei and cytoplasm. mCrip2 binds up to four Cu+ ions and has a limited redox potential. Deleting mCrip2 using CRISPR/Cas9 disrupted muscle formation due to Cu accumulation. Further analyses showed that mCrip2 regulates the expression of genes like MyoD1, essential for muscle differentiation, and metallothioneins in response to copper supplementation. This research highlights the importance of mCrip2 in muscle development and metal homeostasis, providing new insights into the Cu-network in cells.
铜(Cu)对于呼吸作用、神经递质合成、氧化应激反应及转录调控至关重要,其失衡会导致神经、认知及肌肉紊乱。在此,我们展示了一种新型铜结合蛋白(Cu-BP)在哺乳动物转录调控中的作用,特别是利用小鼠原代成肌细胞对骨骼肌分化的调控作用。通过同步加速器X射线荧光-质谱分析,我们确定富含半胱氨酸的小鼠肠道蛋白2(mCrip2)是一种在细胞核和细胞质组分中均丰富存在的关键铜结合蛋白。mCrip2以高亲和力结合两到四个Cu⁺离子,且呈现有限的氧化还原电位。CRISPR/Cas9介导的mCrip2缺失损害了肌生成,这可能是由于细胞内铜积累所致。CUT&RUN和转录组分析揭示了它与包括MyoD1和金属硫蛋白在内的基因启动子的关联,表明mCrip2具有一种新型的铜响应调控作用。我们的研究描述了mCrip2在骨骼肌分化和金属稳态中的重要性,拓展了对成肌细胞中铜网络的理解。铜(Cu)对于包括呼吸作用和应激反应在内的各种细胞过程至关重要,但失衡会引发严重的健康问题。本研究揭示了一种参与原代成肌细胞肌肉发育的新型铜结合蛋白(Cu-BP)。利用无偏向性金属蛋白质组学技术和高通量测序,我们确定mCrip2是一种在细胞核和细胞质中均存在的关键铜结合蛋白。mCrip2可结合多达四个Cu⁺离子,且具有有限的氧化还原电位。使用CRISPR/Cas9删除mCrip2会因铜积累而破坏肌肉形成。进一步分析表明,mCrip2可响应铜补充调节对肌肉分化至关重要的MyoD1等基因以及金属硫蛋白的表达。这项研究突出了mCrip2在肌肉发育和金属稳态中的重要性,为细胞中的铜网络提供了新的见解。