Department of Chemistry, Institute for Chemical Biology, Imperial College London, London, United Kingdom.
PLoS One. 2013 Aug 5;8(8):e70687. doi: 10.1371/journal.pone.0070687. Print 2013.
Fluorescence lifetime imaging (FLIM) is widely applied to obtain quantitative information from fluorescence signals, particularly using Förster Resonant Energy Transfer (FRET) measurements to map, for example, protein-protein interactions. Extracting FRET efficiencies or population fractions typically entails fitting data to complex fluorescence decay models but such experiments are frequently photon constrained, particularly for live cell or in vivo imaging, and this leads to unacceptable errors when analysing data on a pixel-wise basis. Lifetimes and population fractions may, however, be more robustly extracted using global analysis to simultaneously fit the fluorescence decay data of all pixels in an image or dataset to a multi-exponential model under the assumption that the lifetime components are invariant across the image (dataset). This approach is often considered to be prohibitively slow and/or computationally expensive but we present here a computationally efficient global analysis algorithm for the analysis of time-correlated single photon counting (TCSPC) or time-gated FLIM data based on variable projection. It makes efficient use of both computer processor and memory resources, requiring less than a minute to analyse time series and multiwell plate datasets with hundreds of FLIM images on standard personal computers. This lifetime analysis takes account of repetitive excitation, including fluorescence photons excited by earlier pulses contributing to the fit, and is able to accommodate time-varying backgrounds and instrument response functions. We demonstrate that this global approach allows us to readily fit time-resolved fluorescence data to complex models including a four-exponential model of a FRET system, for which the FRET efficiencies of the two species of a bi-exponential donor are linked, and polarisation-resolved lifetime data, where a fluorescence intensity and bi-exponential anisotropy decay model is applied to the analysis of live cell homo-FRET data. A software package implementing this algorithm, FLIMfit, is available under an open source licence through the Open Microscopy Environment.
荧光寿命成像(FLIM)广泛应用于从荧光信号中获取定量信息,特别是使用Förster 共振能量转移(FRET)测量来绘制例如蛋白质-蛋白质相互作用。提取 FRET 效率或群体分数通常需要将数据拟合到复杂的荧光衰减模型中,但此类实验通常受到光子限制,特别是对于活细胞或体内成像,并且这会导致在逐像素基础上分析数据时出现不可接受的误差。然而,使用全局分析可以更稳健地提取寿命和群体分数,该方法同时拟合图像或数据集所有像素的荧光衰减数据,以多指数模型拟合,假设寿命分量在图像(数据集)中保持不变。这种方法通常被认为是非常缓慢和/或计算昂贵的,但我们在这里提出了一种基于变量投影的用于分析时间相关单光子计数(TCSPC)或时间门控 FLIM 数据的计算效率高的全局分析算法。它高效地利用计算机处理器和内存资源,在标准个人计算机上分析具有数百个 FLIM 图像的时间序列和多孔板数据集,所需时间不到一分钟。这种寿命分析考虑了重复激发,包括由早期脉冲激发的荧光光子,有助于拟合,并且能够适应时变背景和仪器响应函数。我们证明,这种全局方法使我们能够轻松地将时间分辨荧光数据拟合到复杂模型中,包括 FRET 系统的四指数模型,其中双指数供体的两种物质的 FRET 效率是相关的,以及偏振分辨寿命数据,其中荧光强度和双指数各向异性衰减模型应用于分析活细胞同型 FRET 数据。实现该算法的软件包 FLIMfit 以开源许可证通过开放显微镜环境提供。