Kim MunJu, Powers Thomas R
Division of Engineering, Box D, Brown University, Providence, Rhode Island 02912, USA.
Phys Rev E Stat Nonlin Soft Matter Phys. 2004 Jun;69(6 Pt 1):061910. doi: 10.1103/PhysRevE.69.061910. Epub 2004 Jun 4.
Escherichia coli bacteria use rotating helical flagella to swim. At this scale, viscous effects dominate inertia, and there are significant hydrodynamic interactions between nearby helices. These interactions cause the flagella to bundle during the "runs" of bacterial chemotaxis. Here we use slender-body theory to solve for the flow fields generated by rigid helices rotated by stationary motors. We determine how the hydrodynamic forces and torques depend on phase and phase difference, show that rigid helices driven at constant torque do not synchronize, and solve for the flows. We also use symmetry arguments based on kinematic reversibility to show that for two rigid helices rotating with zero phase difference, there is no time-averaged attractive or repulsive force between the helices.
大肠杆菌利用旋转的螺旋状鞭毛游动。在这个尺度下,粘性效应主导惯性,并且相邻螺旋之间存在显著的流体动力学相互作用。这些相互作用导致鞭毛在细菌趋化性的“游动”过程中束集在一起。在这里,我们使用细长体理论来求解由固定电机旋转的刚性螺旋产生的流场。我们确定了流体动力和扭矩如何依赖于相位和相位差,表明以恒定扭矩驱动的刚性螺旋不会同步,并求解了流场。我们还基于运动可逆性使用对称性论证表明,对于两个相位差为零旋转的刚性螺旋,螺旋之间不存在时间平均的吸引力或排斥力。