Suppr超能文献

大肠杆菌在趋化作用期间鞭毛运动的物理学

The physics of flagellar motion of E. coli during chemotaxis.

作者信息

Kumar M Siva, Philominathan P

机构信息

Indian School Muscat, Muscat, Oman.

AVVM SriPushpam College, Tanjore, India.

出版信息

Biophys Rev. 2010 Feb;2(1):13-20. doi: 10.1007/s12551-009-0024-5. Epub 2009 Dec 18.

Abstract

Flagellar motion has been an active area of study right from the discovery of bacterial chemotaxis in 1882. During chemotaxis, E. coli moves with the help of helical flagella in an aquatic environment. Helical flagella are rotated in clockwise or counterclockwise direction using reversible flagellar motors situated at the base of each flagellum. The swimming of E. coli is characterized by a low Reynolds number that is unique and time reversible. The random motion of E. coli is influenced by the viscosity of the fluid and the Brownian motion of molecules of fluid, chemoattractants, and chemorepellants. This paper reviews the literature about the physics involved in the propulsion mechanism of E. coli. Starting from the resistive-force theory, various theories on flagellar hydrodynamics are critically reviewed. Expressions for drag force, elastic force and velocity of flagellar elements are derived. By taking the elastic nature of flagella into account, linear and nonlinear equations of motions are derived and their solutions are presented.

摘要

自1882年发现细菌趋化性以来,鞭毛运动一直是一个活跃的研究领域。在趋化过程中,大肠杆菌在水生环境中借助螺旋鞭毛移动。螺旋鞭毛通过位于每个鞭毛基部的可逆鞭毛马达沿顺时针或逆时针方向旋转。大肠杆菌的游动具有低雷诺数的特点,这是独特且时间可逆的。大肠杆菌的随机运动受流体粘度以及流体分子、化学引诱剂和化学驱避剂的布朗运动影响。本文综述了有关大肠杆菌推进机制所涉及物理原理的文献。从阻力理论出发,对各种鞭毛流体动力学理论进行了批判性综述。推导了鞭毛元件的阻力、弹力和速度表达式。考虑到鞭毛的弹性性质,推导了线性和非线性运动方程并给出了它们的解。

相似文献

1
The physics of flagellar motion of E. coli during chemotaxis.
Biophys Rev. 2010 Feb;2(1):13-20. doi: 10.1007/s12551-009-0024-5. Epub 2009 Dec 18.
2
A study of bacterial flagellar bundling.
Bull Math Biol. 2005 Jan;67(1):137-68. doi: 10.1016/j.bulm.2004.06.006.
3
Numerical exploration on buckling instability for directional control in flagellar propulsion.
Soft Matter. 2020 Jan 22;16(3):604-613. doi: 10.1039/c9sm01843c.
4
Mesoscopic modeling of bacterial flagellar microhydrodynamics.
Biophys J. 2006 Nov 15;91(10):3640-52. doi: 10.1529/biophysj.106.091314. Epub 2006 Aug 25.
5
Instabilities of a rotating helical rod in a viscous fluid.
Phys Rev E. 2017 Feb;95(2-1):022410. doi: 10.1103/PhysRevE.95.022410. Epub 2017 Feb 21.
6
Bacterial cell-body rotation driven by a single flagellar motor and by a bundle.
Biophys J. 2021 Jun 15;120(12):2454-2460. doi: 10.1016/j.bpj.2021.04.019. Epub 2021 Apr 29.
7
Hydrodynamics and direction change of tumbling bacteria.
PLoS One. 2021 Jul 20;16(7):e0254551. doi: 10.1371/journal.pone.0254551. eCollection 2021.
8
Fluid-mechanical interaction of flexible bacterial flagella by the immersed boundary method.
Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Mar;85(3 Pt 2):036307. doi: 10.1103/PhysRevE.85.036307. Epub 2012 Mar 19.
10
Coordinated regulation of multiple flagellar motors by the chemotaxis system.
Biophysics (Nagoya-shi). 2012 Mar 3;8:59-66. doi: 10.2142/biophysics.8.59. eCollection 2012.

引用本文的文献

1
Metareview: a survey of active matter reviews.
Eur Phys J E Soft Matter. 2025 Mar 4;48(3):12. doi: 10.1140/epje/s10189-024-00466-z.
2
The maps of meaning consciousness theory.
Front Psychol. 2024 Mar 22;15:1161132. doi: 10.3389/fpsyg.2024.1161132. eCollection 2024.
3
The implication of viability and pathogenicity by truncated lipopolysaccharide in Yersinia enterocolitica.
Appl Microbiol Biotechnol. 2023 Dec;107(23):7165-7180. doi: 10.1007/s00253-023-12785-w. Epub 2023 Sep 20.
4
Decoding the hydrodynamic properties of microscale helical propellers from Brownian fluctuations.
Proc Natl Acad Sci U S A. 2023 May 30;120(22):e2220033120. doi: 10.1073/pnas.2220033120. Epub 2023 May 26.
5
Flagellotropic Bacteriophages: Opportunities and Challenges for Antimicrobial Applications.
Int J Mol Sci. 2022 Jun 25;23(13):7084. doi: 10.3390/ijms23137084.
6
Green Plasmonic Nanoparticles and Bio-Inspired Stimuli-Responsive Vesicles in Cancer Therapy Application.
Nanomaterials (Basel). 2020 May 31;10(6):1083. doi: 10.3390/nano10061083.

本文引用的文献

1
Optimal stroke patterns for Purcell's three-link swimmer.
Phys Rev Lett. 2007 Feb 9;98(6):068105. doi: 10.1103/PhysRevLett.98.068105.
2
Mesoscopic modeling of bacterial flagellar microhydrodynamics.
Biophys J. 2006 Nov 15;91(10):3640-52. doi: 10.1529/biophysj.106.091314. Epub 2006 Aug 25.
3
Continuum model for polymorphism of bacterial flagella.
Phys Rev Lett. 2005 Jun 24;94(24):248101. doi: 10.1103/PhysRevLett.94.248101. Epub 2005 Jun 21.
4
Physical limits to biochemical signaling.
Proc Natl Acad Sci U S A. 2005 Jul 19;102(29):10040-5. doi: 10.1073/pnas.0504321102. Epub 2005 Jul 8.
5
A study of bacterial flagellar bundling.
Bull Math Biol. 2005 Jan;67(1):137-68. doi: 10.1016/j.bulm.2004.06.006.
6
Hydrodynamic interactions between rotating helices.
Phys Rev E Stat Nonlin Soft Matter Phys. 2004 Jun;69(6 Pt 1):061910. doi: 10.1103/PhysRevE.69.061910. Epub 2004 Jun 4.
7
A macroscopic scale model of bacterial flagellar bundling.
Proc Natl Acad Sci U S A. 2003 Dec 23;100(26):15481-5. doi: 10.1073/pnas.2633596100. Epub 2003 Dec 11.
8
The chemotactic effect of oxygen on bacteria.
J Pathol Bacteriol. 1959 Apr;77(2):565-74. doi: 10.1002/path.1700770228.
9
Role of body rotation in bacterial flagellar bundling.
Phys Rev E Stat Nonlin Soft Matter Phys. 2002 Apr;65(4 Pt 1):040903. doi: 10.1103/PhysRevE.65.040903. Epub 2002 Apr 10.
10
Twirling elastica: kinks, viscous drag, and torsional stress.
Phys Rev Lett. 2000 Nov 27;85(22):4827-30. doi: 10.1103/PhysRevLett.85.4827.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验