Vogel R, Stark H
Institute for Theoretical Physics, TU Berlin, Berlin, Germany.
Eur Phys J E Soft Matter. 2012 Feb;35(2):15. doi: 10.1140/epje/i2012-12015-0. Epub 2012 Feb 29.
Many types of bacteria swim by rotating a bundle of helical filaments also called flagella. Each filament is driven by a rotary motor and a very flexible hook transmits the motor torque to the filament. We model it by discretizing Kirchhoff's elastic-rod theory and develop a coarse-grained approach for driving the helical filament by a motor torque. A rotating flagellum generates a thrust force, which pushes the cell body forward and which increases with the motor torque. We fix the rotating flagellum in space and show that it buckles under the thrust force at a critical motor torque. Buckling becomes visible as a supercritical Hopf bifurcation in the thrust force. A second buckling transition occurs at an even higher motor torque. We attach the flagellum to a spherical cell body and also observe the first buckling transition during locomotion. By changing the size of the cell body, we vary the necessary thrust force and thereby obtain a characteristic relation between the critical thrust force and motor torque. We present a elaborate analytical model for the buckling transition based on a helical rod which quantitatively reproduces the critical force-torque relation. Real values for motor torque, cell body size, and the geometry of the helical filament suggest that buckling should occur in single bacterial flagella. We also find that the orientation of pulling flagella along the driving torque is not stable and comment on the biological relevance for marine bacteria.
许多种类的细菌通过旋转一束螺旋状细丝(也称为鞭毛)来游动。每根细丝由一个旋转电机驱动,一个非常灵活的钩子将电机扭矩传递给细丝。我们通过离散化基尔霍夫弹性杆理论对其进行建模,并开发了一种粗粒度方法,用于通过电机扭矩驱动螺旋状细丝。旋转的鞭毛会产生一个推力,该推力将细胞体向前推,并且随着电机扭矩的增加而增大。我们将旋转的鞭毛固定在空间中,并表明它在临界电机扭矩下会在推力作用下发生屈曲。屈曲表现为推力中的超临界霍普夫分岔。第二次屈曲转变发生在更高的电机扭矩下。我们将鞭毛连接到球形细胞体上,并在运动过程中观察到第一次屈曲转变。通过改变细胞体的大小,我们改变了所需的推力,从而获得了临界推力与电机扭矩之间的特征关系。我们基于螺旋杆提出了一个详细的屈曲转变分析模型,该模型定量地再现了临界力 - 扭矩关系。电机扭矩、细胞体大小和螺旋状细丝几何形状的实际值表明,单个细菌鞭毛中应该会发生屈曲。我们还发现,沿驱动扭矩拉动鞭毛的方向不稳定,并对海洋细菌的生物学相关性进行了评论。