Suppr超能文献

纤毛的自发振荡与流固相互作用。

Spontaneous oscillation and fluid-structure interaction of cilia.

机构信息

Courant Institute of Mathematical Sciences, New York University, New York, NY 10012

出版信息

Proc Natl Acad Sci U S A. 2018 Apr 24;115(17):4417-4422. doi: 10.1073/pnas.1712042115. Epub 2018 Apr 9.

Abstract

The exact mechanism to orchestrate the action of hundreds of dynein motor proteins to generate wave-like ciliary beating remains puzzling and has fascinated many scientists. We present a 3D model of a cilium and the simulation of its beating in a fluid environment. The model cilium obeys a simple geometric constraint that arises naturally from the microscopic structure of a real cilium. This constraint allows us to determine the whole 3D structure at any instant in terms of the configuration of a single space curve. The tensions of active links, which model the dynein motor proteins, follow a postulated dynamical law, and together with the passive elasticity of microtubules, this dynamical law is responsible for the ciliary motions. In particular, our postulated tension dynamics lead to the instability of a symmetrical steady state, in which the cilium is straight and its active links are under equal tensions. The result of this instability is a stable, wave-like, limit cycle oscillation. We have also investigated the fluid-structure interaction of cilia using the immersed boundary (IB) method. In this setting, we see not only coordination within a single cilium but also, coordinated motion, in which multiple cilia in an array organize their beating to pump fluid, in particular by breaking phase synchronization.

摘要

精确的机制来协调数以百计的动力蛋白的运动以产生波状的纤毛运动仍然令人费解,并吸引了许多科学家。我们提出了一个纤毛的 3D 模型及其在流体环境中的拍打模拟。模型纤毛遵守一个简单的几何约束,这个约束自然地来自于真实纤毛的微观结构。这个约束允许我们根据单个空间曲线的配置来确定任何瞬间的整个 3D 结构。主动链接的张力,模拟动力蛋白,遵循一个假设的动力学定律,再加上微管的被动弹性,这个动力学定律负责纤毛的运动。特别是,我们假设的张力动力学导致了对称稳态的不稳定性,在这种稳态中,纤毛是直的,其主动链接受到相等的张力。这种不稳定性的结果是一种稳定的、波状的、极限循环的振荡。我们还使用浸入边界(IB)方法研究了纤毛的流固相互作用。在这种情况下,我们不仅看到了单个纤毛内的协调,而且还看到了多个纤毛在阵列中的协调运动,它们通过打破相位同步来组织拍打以泵送流体。

相似文献

1
Spontaneous oscillation and fluid-structure interaction of cilia.纤毛的自发振荡与流固相互作用。
Proc Natl Acad Sci U S A. 2018 Apr 24;115(17):4417-4422. doi: 10.1073/pnas.1712042115. Epub 2018 Apr 9.
3
The chirality of ciliary beats.纤毛摆动的手性
Phys Biol. 2008 Mar 19;5(1):016003. doi: 10.1088/1478-3975/5/1/016003.
5
An integrative computational model of multiciliary beating.多纤毛跳动的综合计算模型。
Bull Math Biol. 2008 May;70(4):1192-215. doi: 10.1007/s11538-008-9296-3. Epub 2008 Jan 31.

引用本文的文献

5
Multiscale mechanics of mucociliary clearance in the lung.肺部黏液纤毛清除的多尺度力学
Philos Trans R Soc Lond B Biol Sci. 2020 Feb 17;375(1792):20190160. doi: 10.1098/rstb.2019.0160. Epub 2019 Dec 30.
6
Cilia oscillations.纤毛摆动。
Philos Trans R Soc Lond B Biol Sci. 2020 Feb 17;375(1792):20190157. doi: 10.1098/rstb.2019.0157. Epub 2019 Dec 30.
7
Reorganization of complex ciliary flows around regenerating .再生过程中复杂纤毛流的重排。
Philos Trans R Soc Lond B Biol Sci. 2020 Feb 17;375(1792):20190167. doi: 10.1098/rstb.2019.0167. Epub 2019 Dec 30.
9
Instability-driven oscillations of elastic microfilaments.弹性微丝的不稳定性驱动的振荡。
J R Soc Interface. 2018 Dec 21;15(149):20180594. doi: 10.1098/rsif.2018.0594.
10
Coordination of eukaryotic cilia and flagella.真核纤毛和鞭毛的协调。
Essays Biochem. 2018 Dec 7;62(6):829-838. doi: 10.1042/EBC20180029.

本文引用的文献

2
Emergence of metachronal waves in cilia arrays.纤毛列阵中协同波的出现。
Proc Natl Acad Sci U S A. 2013 Mar 19;110(12):4470-5. doi: 10.1073/pnas.1218869110. Epub 2013 Mar 4.
3
Structural studies of ciliary components.纤毛成分的结构研究。
J Mol Biol. 2012 Sep 14;422(2):163-80. doi: 10.1016/j.jmb.2012.05.040. Epub 2012 Jun 6.
4
Finding the ciliary beating pattern with optimal efficiency.寻找具有最佳效率的纤毛拍打模式。
Proc Natl Acad Sci U S A. 2011 Sep 20;108(38):15727-32. doi: 10.1073/pnas.1107889108. Epub 2011 Sep 6.
5
Synchronization and collective dynamics in a carpet of microfluidic rotors.微流控转子地毯中的同步和集体动力学。
Phys Rev Lett. 2010 Apr 30;104(17):178103. doi: 10.1103/PhysRevLett.104.178103. Epub 2010 Apr 26.
10
The chirality of ciliary beats.纤毛摆动的手性
Phys Biol. 2008 Mar 19;5(1):016003. doi: 10.1088/1478-3975/5/1/016003.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验