Suppr超能文献

基于主体的家庭层面土地覆盖变化模型的多尺度分析

Multi-scale analysis of a household level agent-based model of landcover change.

作者信息

Evans Tom P, Kelley Hugh

机构信息

Center for the Study of Institutions, Population and Environmental Change, Indiana University, Bloomington, IN 47405, USA.

出版信息

J Environ Manage. 2004 Aug;72(1-2):57-72. doi: 10.1016/j.jenvman.2004.02.008.

Abstract

Scale issues have significant implications for the analysis of social and biophysical processes in complex systems. These same scale implications are likewise considerations for the design and application of models of landcover change. Scale issues have wide-ranging effects from the representativeness of data used to validate models to aggregation errors introduced in the model structure. This paper presents an analysis of how scale issues affect an agent-based model (ABM) of landcover change developed for a research area in the Midwest, USA. The research presented here explores how scale factors affect the design and application of agent-based landcover change models. The ABM is composed of a series of heterogeneous agents who make landuse decisions on a portfolio of cells in a raster-based programming environment. The model is calibrated using measures of fit derived from both spatial composition and spatial pattern metrics from multi-temporal landcover data interpreted from historical aerial photography. A model calibration process is used to find a best-fit set of parameter weights assigned to agents' preferences for different landuses (agriculture, pasture, timber production, and non-harvested forest). Previous research using this model has shown how a heterogeneous set of agents with differing preferences for a portfolio of landuses produces the best fit to landcover changes observed in the study area. The scale dependence of the model is explored by varying the resolution of the input data used to calibrate the model (observed landcover), ancillary datasets that affect land suitability (topography), and the resolution of the model landscape on which agents make decisions. To explore the impact of these scale relationships the model is run with input datasets constructed at the following spatial resolutions: 60, 90, 120, 150, 240, 300 and 480 m. The results show that the distribution of landuse-preference weights differs as a function of scale. In addition, with the gradient descent model fitting method used in this analysis the model was not able to converge to an acceptable fit at the 300 and 480 m spatial resolutions. This is a product of the ratio of the input cell resolution to the average parcel size in the landscape. This paper uses these findings to identify scale considerations in the design, development, validation and application of ABMs of landcover change.

摘要

尺度问题对复杂系统中社会和生物物理过程的分析具有重大影响。这些相同的尺度影响同样也是土地覆盖变化模型设计与应用时需要考虑的因素。尺度问题具有广泛的影响,从用于验证模型的数据的代表性到模型结构中引入的聚合误差。本文分析了尺度问题如何影响为美国中西部一个研究区域开发的基于主体的土地覆盖变化模型(ABM)。此处呈现的研究探讨了尺度因素如何影响基于主体的土地覆盖变化模型的设计与应用。该ABM由一系列异质主体组成,这些主体在基于栅格的编程环境中对一组像元做出土地利用决策。使用从历史航空摄影解译的多时态土地覆盖数据的空间组成和空间格局指标得出的拟合度测量值对模型进行校准。模型校准过程用于找到分配给主体对不同土地利用(农业、牧场、木材生产和未采伐森林)偏好的一组最佳参数权重。此前使用该模型的研究表明,对一组土地利用具有不同偏好的异质主体如何能最佳拟合研究区域观察到的土地覆盖变化。通过改变用于校准模型的输入数据(观测到的土地覆盖)的分辨率、影响土地适宜性的辅助数据集(地形)以及主体做出决策的模型景观的分辨率,来探究模型的尺度依赖性。为了探究这些尺度关系的影响,使用以下空间分辨率构建的输入数据集运行模型:60米、90米、120米、150米、240米、300米和480米。结果表明,土地利用偏好权重的分布随尺度而变化。此外,在此分析中使用的梯度下降模型拟合方法导致模型在300米和480米空间分辨率下无法收敛到可接受的拟合度。这是输入像元分辨率与景观中平均地块大小之比的产物。本文利用这些发现来确定土地覆盖变化ABM设计、开发、验证和应用中的尺度考量因素。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验