Suppr超能文献

癌症的细胞图谱

The cell graphs of cancer.

作者信息

Gunduz Cigdem, Yener Bülent, Gultekin S Humayun

机构信息

Department of Computer Science, Rensselaer Polytechnic Institute, Troy, NY 12180, USA.

出版信息

Bioinformatics. 2004 Aug 4;20 Suppl 1:i145-51. doi: 10.1093/bioinformatics/bth933.

Abstract

We report a novel, proof-of-concept, computational method that models a type of brain cancer (glioma) only by using the topological properties of its cells in the tissue image. From low-magnification (80x) tissue images of 384 x 384 pixels, we construct the graphs of the cells based on the locations of the cells within the images. We generate such cell graphs of 1000-3000 cells (nodes) with 2000-10,000 links, each of which is calculated as a decaying exponential function of the Euclidean distance between every pair of cells in accordance with the Waxman model. At the cellular level, we compute the graph metrics of the cell graphs, including the degree, clustering coefficient, eccentricity and closeness for each cell. Working with a total of 285 tissue samples surgically removed from 12 different patients, we demonstrate that the self-organizing clusters of cancerous cells exhibit distinctive graph metrics that distinguish them from the healthy cells and the unhealthy inflamed cells at the cellular level with an accuracy of at least 85%. At the tissue level, we accomplish correct tissue classifications of cancerous, healthy and non-neoplastic inflamed tissue samples with an accuracy of 100% by requiring correct classification for the majority of the cells within the tissue sample.

摘要

我们报告了一种新颖的、概念验证性的计算方法,该方法仅通过利用组织图像中细胞的拓扑特性来对一种脑癌(胶质瘤)进行建模。从384×384像素的低倍(80倍)组织图像中,我们根据细胞在图像中的位置构建细胞图。我们生成了包含1000 - 3000个细胞(节点)且有2000 - 10000条链接的细胞图,每条链接根据Waxman模型计算为每对细胞之间欧几里得距离的衰减指数函数。在细胞层面,我们计算细胞图的图指标,包括每个细胞的度、聚类系数、离心率和接近度。通过处理从12名不同患者手术切除的总共285个组织样本,我们证明癌细胞的自组织簇在细胞层面表现出独特的图指标,能够将它们与健康细胞和不健康的炎症细胞区分开来,准确率至少为85%。在组织层面,通过要求对组织样本中的大多数细胞进行正确分类,我们实现了对癌性、健康和非肿瘤性炎症组织样本的正确组织分类,准确率为100%。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验