Suppr超能文献

用于口腔黏膜组织中组织学拓扑结构映射的图神经网络框架。

A graph neural network framework for mapping histological topology in oral mucosal tissue.

机构信息

Division of Theoretical Computer Science, Department of Computer Science, KTH Royal Institute of Technology, Stockholm, Sweden.

Division of Oral Diagnostics and Rehabilitation, Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden.

出版信息

BMC Bioinformatics. 2022 Nov 25;23(1):506. doi: 10.1186/s12859-022-05063-5.

Abstract

BACKGROUND

Histological feature representation is advantageous for computer aided diagnosis (CAD) and disease classification when using predictive techniques based on machine learning. Explicit feature representations in computer tissue models can assist explainability of machine learning predictions. Different approaches to feature representation within digital tissue images have been proposed. Cell-graphs have been demonstrated to provide precise and general constructs that can model both low- and high-level features. The basement membrane is high-level tissue architecture, and interactions across the basement membrane are involved in multiple disease processes. Thus, the basement membrane is an important histological feature to study from a cell-graph and machine learning perspective.

RESULTS

We present a two stage machine learning pipeline for generating a cell-graph from a digital H &E stained tissue image. Using a combination of convolutional neural networks for visual analysis and graph neural networks exploiting node and edge labels for topological analysis, the pipeline is shown to predict both low- and high-level histological features in oral mucosal tissue with good accuracy.

CONCLUSIONS

Convolutional and graph neural networks are complementary technologies for learning, representing and predicting local and global histological features employing node and edge labels. Their combination is potentially widely applicable in histopathology image analysis and can enhance explainability in CAD tools for disease prediction.

摘要

背景

在使用基于机器学习的预测技术时,组织学特征表示有利于计算机辅助诊断 (CAD) 和疾病分类。计算机组织模型中的显式特征表示可以帮助解释机器学习预测。已经提出了数字组织图像中不同的特征表示方法。细胞图被证明可以提供精确和通用的结构,能够对低水平和高水平特征进行建模。基膜是高级组织架构,并且基膜上的相互作用涉及多种疾病过程。因此,从细胞图和机器学习的角度来看,基膜是一个重要的组织学特征来研究。

结果

我们提出了一个用于从数字 H&E 染色组织图像生成细胞图的两阶段机器学习管道。该管道使用卷积神经网络进行视觉分析和图神经网络利用节点和边缘标签进行拓扑分析的组合,被证明可以准确地预测口腔黏膜组织中的低水平和高水平组织学特征。

结论

卷积神经网络和图神经网络是用于学习、表示和预测使用节点和边缘标签的局部和全局组织学特征的互补技术。它们的结合在组织病理学图像分析中具有广泛的应用潜力,并可以增强疾病预测 CAD 工具的可解释性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/229e/9700957/99c07ff3f9e8/12859_2022_5063_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验