Rajamani Sowmianarayanan, Ghosh Tuhin, Garde Shekhar
The Howard P. Isermann Department of Chemical & Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, USA.
J Chem Phys. 2004 Mar 1;120(9):4457-66. doi: 10.1063/1.1644536.
The packing and orientation of water molecules in the vicinity of solutes strongly influence the solute hydration thermodynamics in aqueous solutions. Here we study the charge density dependent hydration of a broad range of spherical monovalent ionic solutes (with solute diameters from approximately 0.4 nm to 1.7 nm) through molecular dynamics simulations in the simple point charge model of water. Consistent with previous experimental and theoretical studies, we observe a distinct asymmetry in the structure and thermodynamics of hydration of ions. In particular, the free energy of hydration of negative ions is more favorable than that of positive ions of the same size. This asymmetry persists over the entire range of solute sizes and cannot be captured by a continuum description of the solvent. The favorable hydration of negative ions arises primarily from the asymmetric charge distribution in the water molecule itself, and is reflected in (i) a small positive electrostatic potential at the center of a neutral solute, and (ii) clear structural (packing and orientation) differences in the hydration shell of positive and negative ions. While the asymmetry arising from the positive potential can be quantified in a straightforward manner, that arising from the structural differences in the fully charged states is difficult to quantify. The structural differences are highest for the small ions and diminish with increasing ion size, converging to hydrophobiclike hydration structure for the largest ions studied here. We discuss semiempirical measures following Latimer, Pitzer, and Slansky [J. Chem. Phys. 7, 108 (1939)] that account for these structural differences through a shift in the ion radius. We find that these two contributions account completely for the asymmetry of hydration of positive and negative ions over the entire range of ion sizes studied here. We also present preliminary calculations of the dependence of ion hydration asymmetry on the choice of water model that demonstrate its sensitivity to the details of ion-water interactions.
溶质附近水分子的堆积和取向强烈影响水溶液中溶质的水合热力学。在此,我们通过在水的简单点电荷模型中的分子动力学模拟,研究了一系列广泛的球形单价离子溶质(溶质直径从约0.4纳米到1.7纳米)的电荷密度依赖性水合作用。与先前的实验和理论研究一致,我们观察到离子水合结构和热力学中存在明显的不对称性。特别是,负离子的水合自由能比相同大小的正离子更有利。这种不对称性在溶质大小的整个范围内持续存在,并且不能通过溶剂的连续介质描述来捕捉。负离子的有利水合主要源于水分子本身的不对称电荷分布,并体现在:(i)中性溶质中心处的小正静电势;(ii)正负离子水合壳层中明显的结构(堆积和取向)差异。虽然由正电势引起的不对称性可以直接量化,但由完全带电状态下的结构差异引起的不对称性难以量化。结构差异对于小离子最大,并随着离子尺寸的增加而减小,对于此处研究的最大离子,收敛到类似疏水的水合结构。我们讨论了遵循拉蒂默、皮策和斯兰斯基[《化学物理杂志》7, 108 (1939)]的半经验方法,该方法通过离子半径的变化来考虑这些结构差异。我们发现,这两种贡献完全解释了在此研究的离子大小整个范围内正负离子水合的不对称性。我们还给出了离子水合不对称性对水模型选择的依赖性的初步计算,结果表明其对离子 - 水相互作用细节的敏感性。