Suppr超能文献

定量蛋白质组学差异分析的可重复性:人血清蛋白质液相色谱 - 质谱分析的噪声分析

Quantifying reproducibility for differential proteomics: noise analysis for protein liquid chromatography-mass spectrometry of human serum.

作者信息

Anderle Markus, Roy Sushmita, Lin Hua, Becker Christopher, Joho Keith

机构信息

SurroMed, Inc., 1430 O'Brien Drive, Menlo Park, CA 94025, USA.

出版信息

Bioinformatics. 2004 Dec 12;20(18):3575-82. doi: 10.1093/bioinformatics/bth446. Epub 2004 Jul 29.

Abstract

Using replicated human serum samples, we applied an error model for proteomic differential expression profiling for a high-resolution liquid chromatography-mass spectrometry (LC-MS) platform. The detailed noise analysis presented here uses an experimental design that separates variance caused by sample preparation from variance due to analytical equipment. An analytic approach based on a two-component error model was applied, and in combination with an existing data driven technique that utilizes local sample averaging, we characterized and quantified the noise variance as a function of mean peak intensity. The results indicate that for processed LC-MS data a constant coefficient of variation is dominant for high intensities, whereas a model for low intensities explains Poisson-like variations. This result leads to a quadratic variance model which is used for the estimation of sample preparation noise present in LC-MS data.

摘要

我们使用复制的人血清样本,针对高分辨率液相色谱 - 质谱(LC-MS)平台应用了一种用于蛋白质组差异表达谱分析的误差模型。此处呈现的详细噪声分析采用了一种实验设计,该设计将样本制备引起的方差与分析设备导致的方差区分开来。应用了基于双组分误差模型的分析方法,并结合现有的利用局部样本平均的数据驱动技术,我们将噪声方差表征并量化为平均峰强度的函数。结果表明,对于处理后的LC-MS数据,高强度时恒定变异系数占主导,而低强度模型解释了类似泊松分布的变异。这一结果产生了一个二次方差模型,该模型用于估计LC-MS数据中存在的样本制备噪声。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验