Anderle Markus, Roy Sushmita, Lin Hua, Becker Christopher, Joho Keith
SurroMed, Inc., 1430 O'Brien Drive, Menlo Park, CA 94025, USA.
Bioinformatics. 2004 Dec 12;20(18):3575-82. doi: 10.1093/bioinformatics/bth446. Epub 2004 Jul 29.
Using replicated human serum samples, we applied an error model for proteomic differential expression profiling for a high-resolution liquid chromatography-mass spectrometry (LC-MS) platform. The detailed noise analysis presented here uses an experimental design that separates variance caused by sample preparation from variance due to analytical equipment. An analytic approach based on a two-component error model was applied, and in combination with an existing data driven technique that utilizes local sample averaging, we characterized and quantified the noise variance as a function of mean peak intensity. The results indicate that for processed LC-MS data a constant coefficient of variation is dominant for high intensities, whereas a model for low intensities explains Poisson-like variations. This result leads to a quadratic variance model which is used for the estimation of sample preparation noise present in LC-MS data.
我们使用复制的人血清样本,针对高分辨率液相色谱 - 质谱(LC-MS)平台应用了一种用于蛋白质组差异表达谱分析的误差模型。此处呈现的详细噪声分析采用了一种实验设计,该设计将样本制备引起的方差与分析设备导致的方差区分开来。应用了基于双组分误差模型的分析方法,并结合现有的利用局部样本平均的数据驱动技术,我们将噪声方差表征并量化为平均峰强度的函数。结果表明,对于处理后的LC-MS数据,高强度时恒定变异系数占主导,而低强度模型解释了类似泊松分布的变异。这一结果产生了一个二次方差模型,该模型用于估计LC-MS数据中存在的样本制备噪声。