Suppr超能文献

高分辨率质谱法获取的稳定同位素辅助代谢组学数据分析

Analysis of Stable Isotope Assisted Metabolomics Data Acquired by High Resolution Mass Spectrometry.

作者信息

Wei X, Lorkiewicz P K, Shi B, Salabei J K, Hill B G, Kim S, McClain C J, Zhang X

机构信息

Department of Chemistry, University of Louisville, Louisville, KY 40292, United States.

Center for Regulatory and Environmental Analytical Metabolomics, University of Louisville, Louisville, KY 40292, United States.

出版信息

Anal Methods. 2017 Apr 21;9(15):2275-2283. doi: 10.1039/C7AY00291B. Epub 2017 Mar 10.

Abstract

Stable isotope assisted metabolomics (SIAM) uses stable isotope tracers to support studies of biochemical mechanisms. We report a suite of data analysis algorithms for automatic analysis of SIAM data acquired on a high resolution mass spectrometer. To increase the accuracy of isotopologue assignment, metabolites detected in the unlabeled samples were used as reference metabolites to generate possible isotopologue candidates for analysis of peaks detected in the labeled samples. An iterative linear regression model was developed to deconvolute the overlapping isotopic peaks of isotopologues present in a full MS spectrum, where the threshold for the weight factor was determined by a simulation study assuming different levels of Gaussian white noise contamination. A normalization method enabling isotope ratio-based normalization was implemented to study the difference of isotopologue abundance distribution between sample groups. The developed method can analyze SIAM data acquired by direct infusion MS and LC-MS, and can handle metabolite tracers containing different tracer elements. Analysis of SIAM data acquired from mixtures of known compounds showed that the developed algorithms accurately identify metabolites and quantify stable isotope enrichment. Application of SIAM data acquired from a biological study further demonstrated the effectiveness and accuracy of the developed method for analysis of complex samples.

摘要

稳定同位素辅助代谢组学(SIAM)使用稳定同位素示踪剂来支持对生化机制的研究。我们报告了一套用于自动分析在高分辨率质谱仪上获取的SIAM数据的数据分析算法。为了提高同位素异构体分配的准确性,将未标记样品中检测到的代谢物用作参考代谢物,以生成可能的同位素异构体候选物,用于分析标记样品中检测到的峰。开发了一种迭代线性回归模型,以解卷积全质谱图中存在的同位素异构体的重叠同位素峰,其中权重因子的阈值通过假设不同水平的高斯白噪声污染的模拟研究来确定。实施了一种基于同位素比的归一化方法,以研究样品组之间同位素异构体丰度分布的差异。所开发的方法可以分析通过直接进样质谱和液相色谱 - 质谱获取的SIAM数据,并且可以处理含有不同示踪元素的代谢物示踪剂。对从已知化合物混合物中获取的SIAM数据的分析表明,所开发的算法能够准确识别代谢物并量化稳定同位素富集。从一项生物学研究中获取的SIAM数据的应用进一步证明了所开发方法在分析复杂样品方面的有效性和准确性。

相似文献

7
Isotopologue ratio normalization for non-targeted metabolomics.非靶向代谢组学的同位素异构体比率归一化
J Chromatogr A. 2015 Apr 10;1389:112-9. doi: 10.1016/j.chroma.2015.02.025. Epub 2015 Feb 17.

引用本文的文献

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验