Suppr超能文献

脂肪酸囊泡生长的动力学研究。

A kinetic study of the growth of fatty acid vesicles.

作者信息

Chen Irene A, Szostak Jack W

机构信息

Howard Hughes Medical Institute and Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, USA.

出版信息

Biophys J. 2004 Aug;87(2):988-98. doi: 10.1529/biophysj.104.039875.

Abstract

Membrane vesicles composed of fatty acids can be made to grow and divide under laboratory conditions, and thus provide a model system relevant to the emergence of cellular life. Fatty acid vesicles grow spontaneously when alkaline micelles are added to buffered vesicles. To investigate the mechanism of this process, we used stopped-flow kinetics to analyze the dilution of non-exchanging FRET probes incorporated into preformed vesicles during growth. Oleate vesicle growth occurs in two phases (fast and slow), indicating two pathways for the incorporation of fatty acid into preformed vesicles. We propose that the fast phase, which is stoichiometrically limited by the preformed vesicles, results from the formation of a "shell" of fatty acid around a vesicle, followed by rapid transfer of this fatty acid into the preformed vesicle. The slower phase may result from incorporation of fatty acid which had been trapped in an intermediate state. We provide independent evidence for the rapid transformation of micelles into an aggregated intermediate form after transfer from high to low pH. Our results show that the most efficient incorporation of added oleate into oleic acid/oleate vesicles occurs under conditions that avoid a large transient increase in the micelle/vesicle ratio.

摘要

由脂肪酸组成的膜囊泡在实验室条件下能够生长和分裂,从而提供了一个与细胞生命起源相关的模型系统。当将碱性胶束添加到缓冲囊泡中时,脂肪酸囊泡会自发生长。为了研究这一过程的机制,我们使用停流动力学来分析在生长过程中掺入预先形成的囊泡中的非交换性荧光共振能量转移(FRET)探针的稀释情况。油酸囊泡的生长分为两个阶段(快速和缓慢),这表明脂肪酸掺入预先形成的囊泡有两条途径。我们提出,快速阶段在化学计量上受预先形成的囊泡限制,是由于在囊泡周围形成了一层脂肪酸“壳”,随后该脂肪酸迅速转移到预先形成的囊泡中。较慢的阶段可能是由于被困在中间状态的脂肪酸掺入所致。我们提供了独立的证据,证明胶束在从高pH转移到低pH后会迅速转化为聚集的中间形式。我们的结果表明,在避免胶束/囊泡比例大幅瞬时增加的条件下,添加的油酸最有效地掺入油酸/油酸囊泡中。

相似文献

1
A kinetic study of the growth of fatty acid vesicles.
Biophys J. 2004 Aug;87(2):988-98. doi: 10.1529/biophysj.104.039875.
2
New Insights into the Growth and Transformation of Vesicles: A Free-Flow Electrophoresis Study.
J Phys Chem B. 2015 Sep 17;119(37):12212-23. doi: 10.1021/acs.jpcb.5b05057. Epub 2015 Sep 4.
3
Kinetic studies of the interaction of fatty acids with phosphatidylcholine vesicles (liposomes).
Colloids Surf B Biointerfaces. 2006 Mar 1;48(1):24-34. doi: 10.1016/j.colsurfb.2006.01.001. Epub 2006 Feb 8.
4
Membrane growth can generate a transmembrane pH gradient in fatty acid vesicles.
Proc Natl Acad Sci U S A. 2004 May 25;101(21):7965-70. doi: 10.1073/pnas.0308045101. Epub 2004 May 17.
5
Growth and shape transformations of giant phospholipid vesicles upon interaction with an aqueous oleic acid suspension.
Chem Phys Lipids. 2009 Jun;159(2):67-76. doi: 10.1016/j.chemphyslip.2009.03.005. Epub 2009 Apr 2.
6
Controlled growth of filamentous fatty acid vesicles under flow.
Langmuir. 2014 Dec 16;30(49):14916-25. doi: 10.1021/la503933x. Epub 2014 Dec 1.
7
pH-responsive jello: gelatin gels containing fatty acid vesicles.
Langmuir. 2009 Aug 4;25(15):8519-25. doi: 10.1021/la804159g.
8
[World constructed by self-organization of some amphiphils--with a focus on vesicle formation--].
Yakugaku Zasshi. 2011;131(12):1765-79. doi: 10.1248/yakushi.131.1765.
9
Matrix effect in oleate micelles-vesicles transformation.
Orig Life Evol Biosph. 2004 Feb;34(1-2):215-24. doi: 10.1023/b:orig.0000009841.20997.ac.
10
Fatty acid transfer in taurodeoxycholate mixed micelles.
Biochemistry. 1996 Jun 11;35(23):7466-73. doi: 10.1021/bi952979k.

引用本文的文献

1
Synthetic Lipid Biology.
Chem Rev. 2025 Feb 26;125(4):2502-2560. doi: 10.1021/acs.chemrev.4c00761. Epub 2025 Jan 13.
3
Cyclophospholipids Enable a Protocellular Life Cycle.
ACS Nano. 2023 Dec 12;17(23):23772-23783. doi: 10.1021/acsnano.3c07706. Epub 2023 Dec 1.
5
Revealing the Impacts of Chemical Complexity on Submicrometer Sea Spray Aerosol Morphology.
ACS Cent Sci. 2023 May 4;9(6):1088-1103. doi: 10.1021/acscentsci.3c00184. eCollection 2023 Jun 28.
6
Passive endocytosis in model protocells.
bioRxiv. 2023 May 4:2023.01.07.522792. doi: 10.1101/2023.01.07.522792.
7
Self-reproducing catalytic micelles as nanoscopic protocell precursors.
Nat Rev Chem. 2021 Dec;5(12):870-878. doi: 10.1038/s41570-021-00329-7. Epub 2021 Oct 20.
8
Minimal Out-of-Equilibrium Metabolism for Synthetic Cells: A Membrane Perspective.
ACS Synth Biol. 2023 Apr 21;12(4):922-946. doi: 10.1021/acssynbio.3c00062. Epub 2023 Apr 7.
9
Plausible Sources of Membrane-Forming Fatty Acids on the Early Earth: A Review of the Literature and an Estimation of Amounts.
ACS Earth Space Chem. 2022 Dec 22;7(1):11-27. doi: 10.1021/acsearthspacechem.2c00168. eCollection 2023 Jan 19.

本文引用的文献

1
The electrical double layer and the theory of electrocapillarity.
Chem Rev. 1947 Dec;41(3):441-501. doi: 10.1021/cr60130a002.
2
Revisiting the method of cumulants for the analysis of dynamic light-scattering data.
Appl Opt. 2001 Aug 20;40(24):4087-91. doi: 10.1364/ao.40.004087.
3
Preparation of vesicles from nonphospholipid amphiphiles.
Methods Enzymol. 2003;372:133-51. doi: 10.1016/S0076-6879(03)72008-4.
4
Experimental models of primitive cellular compartments: encapsulation, growth, and division.
Science. 2003 Oct 24;302(5645):618-22. doi: 10.1126/science.1089904.
5
Ion multivalence and like-charge polyelectrolyte attraction.
Phys Rev Lett. 2003 Jul 11;91(2):028301. doi: 10.1103/PhysRevLett.91.028301.
6
Like-charge attraction between polyelectrolytes induced by counterion charge density waves.
Proc Natl Acad Sci U S A. 2003 Jul 22;100(15):8634-7. doi: 10.1073/pnas.1533355100. Epub 2003 Jul 9.
7
Millisecond-range time-resolved small-angle x-ray scattering studies of micellar transformations.
Phys Rev Lett. 2002 Jun 24;88(25 Pt 1):258301. doi: 10.1103/PhysRevLett.88.258301. Epub 2002 Jun 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验