Xu Xiao-Hong Nancy, Brownlow William J, Kyriacou Sophia V, Wan Qian, Viola Joshua J
Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, Virginia 23529, USA.
Biochemistry. 2004 Aug 17;43(32):10400-13. doi: 10.1021/bi036231a.
Membrane transport plays a leading role in a wide spectrum of cellular and subcellular pathways, including multidrug resistance (MDR), cellular signaling, and cell-cell communication. Pseudomonas aeruginosa is renowned for its intriguing membrane transport mechanisms, such as the interplay of membrane permeability and extrusion machinery, leading to selective accumulation of specific intracellular substances and MDR. Despite extensive studies, the mechanisms of membrane transport in living microbial cells remain incompletely understood. In this study, we directly measure real-time change of membrane permeability and pore sizes of P. aeruginosa at the nanometer scale using the intrinsic color index (surface plasmon resonance spectra) of silver (Ag) nanoparticles as the nanometer size index probes. The results show that Ag nanoparticles with sizes ranging up to 80 nm are accumulated in living microbial cells, demonstrating that these Ag nanoparticles transport through the inner and outer membrane of the cells. In addition, a greater number of larger intracellular Ag nanoparticles are observed in the cells as chloramphenicol concentration increases, suggesting that chloramphenicol increases membrane permeability and porosity. Furthermore, studies of mutants (nalB-1 and DeltaABM) show that the accumulation rate of intracellular Ag nanoparticles depends on the expression level of the extrusion pump (MexAB-OprM), suggesting that the extrusion pump plays an important role in controlling the accumulation of Ag nanoparticles in living cells. Moreover, the accumulation kinetics measured by Ag nanoparticles are similar to those measured using a small fluorescent molecule (EtBr), eliminating the possibility of steric and size effects of Ag nanoparticle probes. Susceptibility measurements also suggest that a low concentration of Ag nanoparticles (1.3 pM) does not create significant toxicity for the cells, further validating that single Ag nanoparticles (1.3 pM) can be used as biocompatible nanoprobes for the study of membrane transport kinetics in living microbial cells.
膜转运在广泛的细胞和亚细胞途径中起着主导作用,包括多药耐药性(MDR)、细胞信号传导和细胞间通讯。铜绿假单胞菌以其有趣的膜转运机制而闻名,例如膜通透性和外排机制的相互作用,导致特定细胞内物质的选择性积累和多药耐药性。尽管进行了广泛的研究,但活微生物细胞中膜转运的机制仍未完全了解。在本研究中,我们使用银(Ag)纳米颗粒的固有颜色指数(表面等离子体共振光谱)作为纳米尺寸指数探针,直接测量了纳米尺度下铜绿假单胞菌膜通透性和孔径的实时变化。结果表明,尺寸高达80nm的Ag纳米颗粒在活微生物细胞中积累,表明这些Ag纳米颗粒通过细胞的内膜和外膜进行转运。此外,在细胞中观察到更多较大的细胞内Ag纳米颗粒,随着氯霉素的存在,这表明氯霉素增加了膜通透性和孔隙率。此外,对突变体(nalB-1和DeltaABM)的研究表明,细胞内Ag纳米颗粒的积累速率取决于外排泵(MexAB-OprM)的表达水平,表明外排泵在控制活细胞中Ag纳米颗粒的积累中起重要作用。此外,用Ag纳米颗粒测量的积累动力学与使用小荧光分子(EtBr)测量的动力学相似,排除了Ag纳米颗粒探针的空间和尺寸效应的可能性。药敏性测量还表明,低浓度的Ag纳米颗粒(1.3pM)不会对细胞产生显著毒性,进一步验证了单个Ag纳米颗粒(1.3pM)可作为生物相容性纳米探针用于研究活微生物细胞中的膜转运动力学。