Havryliuk Olesia, Rathee Garima, Blair Jeniffer, Hovorukha Vira, Tashyrev Oleksandr, Morató Jordi, Pérez Leonardo M, Tzanov Tzanko
Department of Extremophilic Microorganisms Biology, D. K. Zabolotny Institute of Microbiology and Virology of the National Academy of Sciences of Ukraine, 154 Zabolotny St., 03143 Kyiv, Ukraine.
Laboratory of Sanitary and Environmental Microbiology (MSMLab), UNESCO Chair on Sustainability, Universitat Politècnica de Catalunya-BarcelonaTech (UPC), Rambla de Sant Nebridi 22, 08222 Terrassa, Barcelona, Spain.
Nanomaterials (Basel). 2024 Oct 13;14(20):1644. doi: 10.3390/nano14201644.
Four novel strains with record resistance to copper (Cu) previously isolated from ecologically diverse samples ( UKR1, UKR2, UKR3, and UKR4) were tested against sonochemically synthesised copper-oxide (I) (CuO) and copper-oxide (II) (CuO) nanoparticles (NPs). Nanomaterials characterisation by X-ray diffractometry (XRD), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR), and High-Resolution Transmission Electron Microscopy (HRTEM) confirmed the synthesis of CuO and CuO NPs. CuO NPs exhibited better performance in inhibiting bacterial growth due to their heightened capacity to induce oxidative stress. The greater stability and geometrical shape of CuO NPs were disclosed as important features associated with bacterial cell toxicity. SEM and TEM images confirmed that both NPs caused membrane disruption, altered cell morphology, and pronounced membrane vesiculation, a distinctive feature of bacteria dealing with stressor factors. Finally, CuO and CuO NPs effectively decreased the biofilm-forming ability of the Cu-resistant UKR strains as well as degraded pre-established biofilm, matching NPs' antimicrobial performance. Despite the similarities in the mechanisms of action revealed by both NPs, distinctive behaviours were also detected for the different species of wild-type analysed. In summary, these findings underscore the efficacy of nanotechnology-driven strategies for combating metal tolerance in bacteria.
先前从生态多样的样本中分离出的四株对铜(Cu)具有创纪录抗性的新型菌株(UKR1、UKR2、UKR3和UKR4),针对超声化学合成的氧化亚铜(Cu₂O)和氧化铜(CuO)纳米颗粒(NPs)进行了测试。通过X射线衍射(XRD)、X射线光电子能谱(XPS)、傅里叶变换红外光谱(FTIR)和高分辨率透射电子显微镜(HRTEM)对纳米材料进行表征,证实了Cu₂O和CuO NPs的合成。由于CuO NPs诱导氧化应激的能力增强,其在抑制细菌生长方面表现出更好的性能。CuO NPs更大的稳定性和几何形状被揭示为与细菌细胞毒性相关的重要特征。扫描电子显微镜(SEM)和透射电子显微镜(TEM)图像证实,这两种纳米颗粒都会导致膜破坏、改变细胞形态,并出现明显的膜泡化,这是细菌应对应激因素的一个显著特征。最后,Cu₂O和CuO NPs有效降低了耐铜UKR菌株形成生物膜的能力,并降解了预先形成的生物膜,与纳米颗粒的抗菌性能相匹配。尽管两种纳米颗粒揭示的作用机制相似,但对所分析的不同野生型物种也检测到了独特的行为。总之,这些发现强调了纳米技术驱动的策略在对抗细菌金属耐受性方面的有效性。