O'Keefe Michael A, Shao-Horn Yang
Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
Microsc Microanal. 2004 Feb;10(1):86-95. doi: 10.1017/S143192760404019X.
John Cowley and his group at Arizona State University pioneered the use of transmission electron microscopy (TEM) for high-resolution imaging. Three decades ago they achieved images showing the crystal unit cell content at better than 4 angstroms resolution. Over the years, this achievement has inspired improvements in resolution that have enabled researchers to pinpoint the positions of heavy atom columns within the cell. More recently, this ability has been extended to light atoms as resolution has improved. Sub-angstrom resolution has enabled researchers to image the columns of light atoms (carbon, oxygen, and nitrogen) that are present in many complex structures. By using sub-angstrom focal-series reconstruction of the specimen exit surface wave to image columns of cobalt, oxygen, and lithium atoms in a transition metal oxide structure commonly used as positive electrodes in lithium rechargeable batteries, we show that the range of detectable light atoms extends to lithium. HRTEM at sub-angstrom resolution will provide the essential role of experimental verification for the emergent nanotech revolution. Our results foreshadow those to be expected from next-generation TEMs with CS-corrected lenses and monochromated electron beams.
亚利桑那州立大学的约翰·考利及其团队率先将透射电子显微镜(TEM)用于高分辨率成像。三十年前,他们获得了分辨率优于4埃的晶体晶胞内容物图像。多年来,这一成果推动了分辨率的提升,使研究人员能够精确确定晶胞内重原子列的位置。最近,随着分辨率的提高,这种能力已扩展到轻原子。亚埃分辨率使研究人员能够对许多复杂结构中存在的轻原子(碳、氧和氮)列进行成像。通过使用亚埃焦系列重建样品出射面波,对锂可充电电池中常用作正极的过渡金属氧化物结构中的钴、氧和锂原子列进行成像,我们表明可检测到的轻原子范围扩展到了锂。亚埃分辨率的高分辨率透射电子显微镜将为新兴的纳米技术革命提供实验验证的关键作用。我们的结果预示了具有球差校正透镜和单色电子束的下一代透射电子显微镜的预期结果。