Kisielowski C, Freitag B, Bischoff M, van Lin H, Lazar S, Knippels G, Tiemeijer P, van der Stam M, von Harrach S, Stekelenburg M, Haider M, Uhlemann S, Müller H, Hartel P, Kabius B, Miller D, Petrov I, Olson E A, Donchev T, Kenik E A, Lupini A R, Bentley J, Pennycook S J, Anderson I M, Minor A M, Schmid A K, Duden T, Radmilovic V, Ramasse Q M, Watanabe M, Erni R, Stach E A, Denes P, Dahmen U
National Center for Electron Microscopy, Lawrence Berkeley National Laboratory, One Cyclotron Rd., Berkeley, CA 94720, USA.
Microsc Microanal. 2008 Oct;14(5):469-77. doi: 10.1017/S1431927608080902.
The ability of electron microscopes to analyze all the atoms in individual nanostructures is limited by lens aberrations. However, recent advances in aberration-correcting electron optics have led to greatly enhanced instrument performance and new techniques of electron microscopy. The development of an ultrastable electron microscope with aberration-correcting optics and a monochromated high-brightness source has significantly improved instrument resolution and contrast. In the present work, we report information transfer beyond 50 pm and show images of single gold atoms with a signal-to-noise ratio as large as 10. The instrument's new capabilities were exploited to detect a buried Sigma3 {112} grain boundary and observe the dynamic arrangements of single atoms and atom pairs with sub-angstrom resolution. These results mark an important step toward meeting the challenge of determining the three-dimensional atomic-scale structure of nanomaterials.
电子显微镜分析单个纳米结构中所有原子的能力受到透镜像差的限制。然而,像差校正电子光学技术的最新进展极大地提高了仪器性能,并带来了新的电子显微镜技术。配备像差校正光学器件和单色高亮度源的超稳定电子显微镜的开发显著提高了仪器分辨率和对比度。在本工作中,我们报告了超过50皮米的信息传递,并展示了信噪比高达10的单金原子图像。利用该仪器的新功能检测了埋藏的Sigma3 {112}晶界,并以亚埃分辨率观察了单原子和原子对的动态排列。这些结果标志着在应对确定纳米材料三维原子尺度结构挑战方面迈出了重要一步。