Castro Marisol R, Lutz David, Edelman Jeffrey L
Department of Biological Sciences, Allergan, Inc., 2525 Dupont, Irvine, CA 92612, USA.
Exp Eye Res. 2004 Aug;79(2):275-85. doi: 10.1016/j.exer.2004.04.008.
The primary objective of this study was to evaluate the effect of cyclooxygenase (COX) inhibitors, non-steroidal anti-inflammatory drugs (NSAIDs), in two in vivo models of VEGF-dependent corneal and choroidal angiogenesis and two in vivo models of VEGF-mediated vascular leakage. Non-selective COX inhibitors (the NSAIDs indomethacin and flunixin, p.o. or i.p.), the COX-1 selective inhibitor SC-560 (s.c. or i.p.), and the COX-2 selective inhibitor NS-398 (s.c. or i.p.) were evaluated in four experimental models. Choroidal neovascularization was induced in Brown Norway rats by argon laser photocoagulation and measured after ten days. Corneal neovascularization was induced by alkaline cautery in Sprague-Dawley rats and measured after four days. VEGF protein levels in the cornea were quantified by ELISA. VEGF-induced intradermal extravasation of Evans blue dye (EBD)-albumin was assayed in Hartley guinea pigs. Intravitreal VEGF-induced blood-retinal barrier breakdown was assayed by scanning ocular fluorophotometry in Dutch Belt rabbits. Indomethacin (1 or 3 mg kg(-1) day(-1), p.o.), SC-560 (20 mg kg(-1) day(-1), s.c.), and NS-398 (20 mg kg(-1) day(-1), s.c.) failed to inhibit laser-induced CNV. CNV was inhibited, however, by the corticosteroid dexamethasone (0.5 mg kg(-1) day(-1); p.o. or s.c.; 99% or 90% inhibition; p<0.01 or p<0.001, respectively). In contrast, cautery-induced corneal angiogenesis was inhibited partially by the NSAID indomethacin and the COX-2 selective inhibitor NS-398. Indomethacin, 3.5 or 7 mg kg(-1) day(-1), inhibited corneal neovascularization by 56% (p<0.001) or 68% (p<0.001) respectively. Similar partial inhibition of angiogenesis in the cornea model was observed with NS-398 (10 or 20 mg kg(-1) day(-1), s.c. or i.p.; 54% inhibition, p<0.001), but not with the COX-1 selective SC-560 (10 or 20 mg kg(-1) day(-1), s.c.). In the cornea, VEGF protein is dramatically upregulated 24 and 48 hr after cautery, and both indomethacin and NS-398-but not SC-560-significantly inhibited this VEGF upregulation. In experimental models of VEGF-induced vascular leakage, COX inhibitors had no effect on dermal or retinal vascular responses to VEGF. The NSAIDs indomethacin (7.5 or 20 mg kg(-1), p.o. or i.p.) and flunixin (12.5 mg kg(-1), i.p.) failed to inhibit VEGF-induced dermal extravasation of EBD-albumin in guinea pigs. In contrast, L-NAME (25 or 50 mg kg(-1), p.o.)-an anti-vasodilatory inhibitor of nitric oxide synthase-dose-dependently inhibited up to 64% (p<0.001) of this dermal vascular leakage. VEGF-mediated retinal vascular leakage was not blocked by COX inhibition. Intravitreal VEGF-induced BRB breakdown--which was completely blocked by VEGF neutralizing s-Flt-1/Fc protein (intravitreal co-administration; p<0.001)--was not inhibited by indomethacin (20 mg kg(-1) day(-1), s.c.). Although COX inhibitors were ineffective at blocking experimental CNV, both non-selective and COX-2 selective inhibitors partially blocked severe inflammatory corneal angiogenesis and its concurrent upregulation of VEGF protein. These results suggest that eicosanoids produced by inducible COX-2 are among multiple mediators that modulate VEGF expression as a stimulus in inflammation-associated angiogenesis. The lack of effect with COX inhibitors on either VEGF-mediated dermal extravasation or VEGF-mediated blood-retinal barrier breakdown indicates that COX activity is not required for vascular leakage responses to VEGF.
本研究的主要目的是评估环氧化酶(COX)抑制剂,即非甾体抗炎药(NSAIDs),在两种VEGF依赖性角膜和脉络膜血管生成的体内模型以及两种VEGF介导的血管渗漏的体内模型中的作用。在四种实验模型中评估了非选择性COX抑制剂(NSAIDs吲哚美辛和氟尼辛,口服或腹腔注射)、COX-1选择性抑制剂SC-560(皮下或腹腔注射)和COX-2选择性抑制剂NS-398(皮下或腹腔注射)。通过氩激光光凝在棕色挪威大鼠中诱导脉络膜新生血管形成,并在十天后进行测量。通过碱性烧灼在斯普拉格-道利大鼠中诱导角膜新生血管形成,并在四天后进行测量。通过ELISA对角膜中的VEGF蛋白水平进行定量。在哈特利豚鼠中测定VEGF诱导的伊文思蓝染料(EBD)-白蛋白皮内渗出。通过扫描眼荧光光度法在荷兰带兔中测定玻璃体内VEGF诱导的血视网膜屏障破坏。吲哚美辛(1或3mg kg⁻¹天⁻¹,口服)、SC-560(20mg kg⁻¹天⁻¹,皮下注射)和NS-398(20mg kg⁻¹天⁻¹,皮下注射)未能抑制激光诱导的脉络膜新生血管形成。然而,皮质类固醇地塞米松(0.5mg kg⁻¹天⁻¹;口服或皮下注射;分别为99%或90%抑制;p<0.01或p<0.001)抑制了脉络膜新生血管形成。相比之下,NSAIDs吲哚美辛和COX-2选择性抑制剂NS-398部分抑制了烧灼诱导的角膜血管生成。吲哚美辛,3.5或7mg kg⁻¹天⁻¹,分别抑制角膜新生血管形成56%(p<0.001)或68%(p<0.001)。在角膜模型中,使用NS-398(10或20mg kg⁻¹天⁻¹,皮下或腹腔注射;54%抑制,p<0.001)观察到对血管生成的类似部分抑制,但使用COX-1选择性SC-560(10或20mg kg⁻¹天⁻¹,皮下注射)未观察到。在角膜中,烧灼后24和48小时VEGF蛋白显著上调,吲哚美辛和NS-398(但不是SC-560)均显著抑制了这种VEGF上调。在VEGF诱导的血管渗漏实验模型中,COX抑制剂对VEGF诱导的皮肤或视网膜血管反应没有影响。NSAIDs吲哚美辛(7.5或20mg kg⁻¹,口服或腹腔注射)和氟尼辛(12.5mg kg⁻¹,腹腔注射)未能抑制豚鼠中VEGF诱导的EBD-白蛋白皮内渗出。相比之下,L-NAME(25或50mg kg⁻¹,口服)——一种一氧化氮合酶的抗血管舒张抑制剂——剂量依赖性地抑制高达64%(p<0.001)的这种皮肤血管渗漏。COX抑制未阻断VEGF介导的视网膜血管渗漏。玻璃体内VEGF诱导的血视网膜屏障破坏——被VEGF中和性s-Flt-1/Fc蛋白(玻璃体内共同给药;p<0.001)完全阻断——未被吲哚美辛(20mg kg⁻¹天⁻¹,皮下注射)抑制。尽管COX抑制剂在阻断实验性脉络膜新生血管形成方面无效,但非选择性和COX-2选择性抑制剂均部分阻断了严重的炎症性角膜血管生成及其同时发生的VEGF蛋白上调。这些结果表明,诱导型COX-2产生的类花生酸是多种调节VEGF表达的介质之一,VEGF表达是炎症相关血管生成中的一种刺激因素。COX抑制剂对VEGF介导的皮肤渗出或VEGF介导的血视网膜屏障破坏均无作用,这表明血管渗漏对VEGF的反应不需要COX活性。