Fishman Ayelet, Tao Ying, Bentley William E, Wood Thomas K
Department of Chemical Engineering, University of Connecticut, Storrs 06269-3222, USA.
Biotechnol Bioeng. 2004 Sep 20;87(6):779-90. doi: 10.1002/bit.20185.
After discovering that toluene 4-monooxygenase (T4MO) of Pseudomonas mendocina KR1 oxidizes nitrobenzene to 4-nitrocatechol, albeit at a very low rate, this reaction was improved using directed evolution and saturation mutagenesis. Screening 550 colonies from a random mutagenesis library generated by error-prone PCR of tmoAB using Escherichia coli TG1/pBS(Kan)T4MO on agar plates containing nitrobenzene led to the discovery of nitrocatechol-producing mutants. One mutant, NB1, contained six amino acid substitutions (TmoA Y22N, I84Y, S95T, I100S, S400C; TmoB D79N). It was believed that position I100 of the alpha subunit of the hydroxylase (TmoA) is the most significant for the change in substrate reactivity due to previous results in our lab with a similar enzyme, toluene ortho-monooxygenase of Burkholderia cepacia G4. Saturation mutagenesis at this position resulted in the generation of two more nitrocatechol mutants, I100A and I100S; the rate of 4-nitrocatechol formation by I100A was more than 16 times higher than that of wild-type T4MO at 200 microM nitrobenzene (0.13 +/- 0.01 vs. 0.008 +/- 0.001 nmol/min.mg protein). HPLC and mass spectrometry analysis revealed that variants NB1, I100A, and I100S produce 4-nitrocatechol via m-nitrophenol, while the wild-type produces primarily p-nitrophenol and negligible amounts of nitrocatechol. Relative to wild-type T4MO, whole cells expressing variant I100A convert nitrobenzene into m-nitrophenol with a Vmax of 0.61 +/- 0.037 vs. 0.16 +/- 0.071 nmol/min.mg protein and convert m-nitrophenol into nitrocatechol with a Vmax of 3.93 +/- 0.26 vs. 0.58 +/- 0.033 nmol/min.mg protein. Hence, the regiospecificity of nitrobenzene oxidation was changed by the random mutagenesis, and this led to a significant increase in 4-nitrocatechol production. The regiospecificity of toluene oxidation was also altered, and all of the mutants produced 20% m-cresol and 80% p-cresol, while the wild-type produces 96% p-cresol. Interestingly, the rate of toluene oxidation (the natural substrate of the enzyme) by I100A was also higher by 65% (7.2 +/- 1.2 vs. 4.4 +/- 0.3 nmol/min mg protein). Homology-based modeling of TmoA suggests reducing the size of the side chain of I100 leads to an increase in the width of the active site channel, which facilitates access of substrates and promotes more flexible orientations.
在发现门多萨假单胞菌KR1的甲苯4-单加氧酶(T4MO)能将硝基苯氧化为4-硝基邻苯二酚后,尽管反应速率非常低,但通过定向进化和饱和诱变对该反应进行了改进。在含有硝基苯的琼脂平板上,对由易错PCR扩增tmoAB产生的随机诱变文库中的550个菌落进行筛选,使用大肠杆菌TG1/pBS(Kan)T4MO,从而发现了产生硝基邻苯二酚的突变体。一个突变体NB1含有六个氨基酸取代(TmoA Y22N、I84Y、S95T、I100S、S400C;TmoB D79N)。由于我们实验室之前对类似酶洋葱伯克霍尔德菌G4的甲苯邻单加氧酶的研究结果,认为羟化酶(TmoA)α亚基的I100位点对底物反应性的变化最为重要。在该位点进行饱和诱变又产生了另外两个硝基邻苯二酚突变体I100A和I100S;在200μM硝基苯条件下,I100A形成4-硝基邻苯二酚的速率比野生型T4MO高出16倍以上(0.13±0.01对0.008±0.001 nmol/分钟·毫克蛋白)。高效液相色谱和质谱分析表明,变体NB1、I100A和I100S通过间硝基苯酚产生4-硝基邻苯二酚,而野生型主要产生对硝基苯酚且产生的硝基邻苯二酚量可忽略不计。相对于野生型T4MO,表达变体I100A的全细胞将硝基苯转化为间硝基苯酚的Vmax为0.61±0.037对0.16±0.071 nmol/分钟·毫克蛋白,将间硝基苯酚转化为硝基邻苯二酚的Vmax为3.93±0.26对0.58±0.033 nmol/分钟·毫克蛋白。因此,随机诱变改变了硝基苯氧化的区域特异性,这导致4-硝基邻苯二酚产量显著增加。甲苯氧化的区域特异性也发生了改变,所有突变体产生20%的间甲酚和80%的对甲酚,而野生型产生