Suppr超能文献

结合基于图谱的分割和强度分类、最近邻变换和精度加权投票。

Combining atlas based segmentation and intensity classification with nearest neighbor transform and accuracy weighted vote.

机构信息

Centre de Résonnance Magnétique Biologique et Médical, CNRS UMR n(o) 6612, Faculté de Médecine de Marseille, Université de la Méditérranée, 27 Bd Jean Moulin, 13005 Marseille, France.

出版信息

Med Image Anal. 2010 Apr;14(2):219-26. doi: 10.1016/j.media.2009.12.004. Epub 2009 Dec 16.

Abstract

In this paper, different methods to improve atlas based segmentation are presented. The first technique is a new mapping of the labels of an atlas consistent with a given intensity classification segmentation. This new mapping combines the two segmentations using the nearest neighbor transform and is especially effective for complex and folded regions like the cortex where the registration is difficult. Then, in a multi atlas context, an original weighting is introduced to combine the segmentation of several atlases using a voting procedure. This weighting is derived from statistical classification theory and is computed offline using the atlases as a training dataset. Concretely, the accuracy map of each atlas is computed and the vote is weighted by the accuracy of the atlases. Numerical experiments have been performed on publicly available in vivo datasets and show that, when used together, the two techniques provide an important improvement of the segmentation accuracy.

摘要

本文提出了几种改进图谱分割的方法。第一种技术是对图谱标签进行新的映射,使其与给定的强度分类分割一致。这种新的映射使用最近邻变换将两个分割结合起来,对于像皮层这样复杂和折叠的区域特别有效,因为这些区域的配准比较困难。然后,在多图谱环境中,引入了一种原始的加权方法,通过投票过程结合多个图谱的分割。这种加权方法源于统计分类理论,使用图谱作为训练数据集离线计算。具体来说,计算每个图谱的准确率图,然后根据图谱的准确率对投票进行加权。在公开的体内数据集上进行了数值实验,结果表明,当两种技术一起使用时,可以显著提高分割的准确率。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验