Suppr超能文献

利用稀疏距离约束对跨膜螺旋进行最优捆绑。

Optimal bundling of transmembrane helices using sparse distance constraints.

作者信息

Sale Ken, Faulon Jean-Loup, Gray Genetha A, Schoeniger Joseph S, Young Malin M

机构信息

Biosystems Research Department, Sandia National Laboratories, P.O. Box 969, MS 9951, Livermore CA 94551-0969, USA.

出版信息

Protein Sci. 2004 Oct;13(10):2613-27. doi: 10.1110/ps.04781504. Epub 2004 Aug 31.

Abstract

We present a two-step approach to modeling the transmembrane spanning helical bundles of integral membrane proteins using only sparse distance constraints, such as those derived from chemical cross-linking, dipolar EPR and FRET experiments. In Step 1, using an algorithm, we developed, the conformational space of membrane protein folds matching a set of distance constraints is explored to provide initial structures for local conformational searches. In Step 2, these structures refined against a custom penalty function that incorporates both measures derived from statistical analysis of solved membrane protein structures and distance constraints obtained from experiments. We begin by describing the statistical analysis of the solved membrane protein structures from which the theoretical portion of the penalty function was derived. We then describe the penalty function, and, using a set of six test cases, demonstrate that it is capable of distinguishing helical bundles that are close to the native bundle from those that are far from the native bundle. Finally, using a set of only 27 distance constraints extracted from the literature, we show that our method successfully recovers the structure of dark-adapted rhodopsin to within 3.2 A of the crystal structure.

摘要

我们提出了一种两步法,仅使用稀疏距离约束(例如源自化学交联、偶极电子顺磁共振和荧光共振能量转移实验的那些约束)来对整合膜蛋白的跨膜螺旋束进行建模。在第一步中,使用我们开发的一种算法,探索与一组距离约束匹配的膜蛋白折叠的构象空间,以提供用于局部构象搜索的初始结构。在第二步中,根据一个自定义惩罚函数对这些结构进行优化,该惩罚函数既纳入了从已解析膜蛋白结构的统计分析中得出的度量,也纳入了从实验中获得的距离约束。我们首先描述已解析膜蛋白结构的统计分析,惩罚函数的理论部分即由此得出。然后我们描述惩罚函数,并通过一组六个测试案例证明,它能够区分接近天然束的螺旋束和远离天然束的螺旋束。最后,使用从文献中提取的仅27个距离约束,我们表明我们的方法成功地将暗适应视紫红质的结构恢复到与晶体结构相差3.2埃以内。

相似文献

1
Optimal bundling of transmembrane helices using sparse distance constraints.
Protein Sci. 2004 Oct;13(10):2613-27. doi: 10.1110/ps.04781504. Epub 2004 Aug 31.
2
A deterministic algorithm for constrained enumeration of transmembrane protein folds.
Comput Biol Chem. 2005 Apr;29(2):143-50. doi: 10.1016/j.compbiolchem.2005.03.001.
3
Exploring the conformational space of membrane protein folds matching distance constraints.
Protein Sci. 2003 Aug;12(8):1750-61. doi: 10.1110/ps.0305003.
4
Structural determinants of transmembrane helical proteins.
Structure. 2009 Aug 12;17(8):1092-103. doi: 10.1016/j.str.2009.06.009.
5
Membrane proteins: from bench to bits.
Biochem Soc Trans. 2011 Jun;39(3):747-50. doi: 10.1042/BST0390747.
6
The effect of loops on the structural organization of alpha-helical membrane proteins.
Biophys J. 2009 Mar 18;96(6):2299-312. doi: 10.1016/j.bpj.2008.12.3894.
7
Structures of the transmembrane helices of the G-protein coupled receptor, rhodopsin.
J Pept Res. 2001 Jul;58(1):79-89. doi: 10.1034/j.1399-3011.2001.00904.x.
9
An empirical energy function for structural assessment of protein transmembrane domains.
Biochimie. 2015 Aug;115:155-61. doi: 10.1016/j.biochi.2015.05.018. Epub 2015 Jun 2.

引用本文的文献

1
Rapid Simulation of Unprocessed DEER Decay Data for Protein Fold Prediction.
Biophys J. 2020 Jan 21;118(2):366-375. doi: 10.1016/j.bpj.2019.12.011. Epub 2019 Dec 18.
2
A photon-free approach to transmembrane protein structure determination.
J Mol Biol. 2011 Dec 9;414(4):596-610. doi: 10.1016/j.jmb.2011.10.016. Epub 2011 Oct 15.
3
Simplified modeling approach suggests structural mechanisms for constitutive activation of the C5a receptor.
Proteins. 2011 Mar;79(3):787-802. doi: 10.1002/prot.22918. Epub 2010 Nov 30.
5
Alpha-helical topology prediction and generation of distance restraints in membrane proteins.
Biophys J. 2008 Dec;95(11):5281-95. doi: 10.1529/biophysj.108.132241. Epub 2008 Sep 5.
6
Structural refinement of membrane proteins by restrained molecular dynamics and solvent accessibility data.
Biophys J. 2008 Dec;95(11):5349-61. doi: 10.1529/biophysj.108.142984. Epub 2008 Aug 1.
7
Computational prediction of atomic structures of helical membrane proteins aided by EM maps.
Biophys J. 2007 Sep 15;93(6):1950-9. doi: 10.1529/biophysj.106.102137. Epub 2007 May 11.
8
Structure modeling of all identified G protein-coupled receptors in the human genome.
PLoS Comput Biol. 2006 Feb;2(2):e13. doi: 10.1371/journal.pcbi.0020013. Epub 2006 Feb 17.
9
Dipolar coupling between nitroxide spin labels: the development and application of a tether-in-a-cone model.
Biophys J. 2006 Jan 1;90(1):340-56. doi: 10.1529/biophysj.105.068544. Epub 2005 Oct 7.

本文引用的文献

1
Optimization by simulated annealing.
Science. 1983 May 13;220(4598):671-80. doi: 10.1126/science.220.4598.671.
4
MS2Assign, automated assignment and nomenclature of tandem mass spectra of chemically crosslinked peptides.
J Am Soc Mass Spectrom. 2003 Aug;14(8):834-50. doi: 10.1016/S1044-0305(03)00327-1.
5
Exploring the conformational space of membrane protein folds matching distance constraints.
Protein Sci. 2003 Aug;12(8):1750-61. doi: 10.1110/ps.0305003.
6
A simple method for modeling transmembrane helix oligomers.
J Mol Biol. 2003 Jun 13;329(4):831-40. doi: 10.1016/s0022-2836(03)00521-7.
8
9
Higher-order interhelical spatial interactions in membrane proteins.
J Mol Biol. 2003 Mar 14;327(1):251-72. doi: 10.1016/s0022-2836(03)00041-x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验