Suppr超能文献

快速模拟未经处理的 DEER 衰减数据以进行蛋白质折叠预测。

Rapid Simulation of Unprocessed DEER Decay Data for Protein Fold Prediction.

机构信息

Department of Chemistry and Center for Structural Biology; Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee.

Department of Microbiology and Immunology.

出版信息

Biophys J. 2020 Jan 21;118(2):366-375. doi: 10.1016/j.bpj.2019.12.011. Epub 2019 Dec 18.

Abstract

Despite advances in sampling and scoring strategies, Monte Carlo modeling methods still struggle to accurately predict de novo the structures of large proteins, membrane proteins, or proteins of complex topologies. Previous approaches have addressed these shortcomings by leveraging sparse distance data gathered using site-directed spin labeling and electron paramagnetic resonance spectroscopy to improve protein structure prediction and refinement outcomes. However, existing computational implementations entail compromises between coarse-grained models of the spin label that lower the resolution and explicit models that lead to resource-intense simulations. These methods are further limited by their reliance on distance distributions, which are calculated from a primary refocused echo decay signal and contain uncertainties that may require manual refinement. Here, we addressed these challenges by developing RosettaDEER, a scoring method within the Rosetta software suite capable of simulating double electron-electron resonance spectroscopy decay traces and distance distributions between spin labels fast enough to fold proteins de novo. We demonstrate that the accuracy of resulting distance distributions match or exceed those generated by more computationally intensive methods. Moreover, decay traces generated from these distributions recapitulate intermolecular background coupling parameters even when the time window of data collection is truncated. As a result, RosettaDEER can discriminate between poorly folded and native-like models by using decay traces that cannot be accurately converted into distance distributions using regularized fitting approaches. Finally, using two challenging test cases, we demonstrate that RosettaDEER leverages these experimental data for protein fold prediction more effectively than previous methods. These benchmarking results confirm that RosettaDEER can effectively leverage sparse experimental data for a wide array of modeling applications built into the Rosetta software suite.

摘要

尽管在采样和评分策略方面取得了进展,但蒙特卡罗建模方法仍然难以准确预测从头开始的大型蛋白质、膜蛋白质或具有复杂拓扑结构的蛋白质的结构。以前的方法通过利用使用定点旋转标记和电子顺磁共振波谱学收集的稀疏距离数据来解决这些缺点,从而改善蛋白质结构预测和细化结果。然而,现有的计算实现方法在旋转标记的粗粒度模型和导致资源密集型模拟的显式模型之间存在折衷。这些方法进一步受到其对距离分布的依赖的限制,这些距离分布是从主重聚焦回波衰减信号计算得出的,并且包含可能需要手动细化的不确定性。在这里,我们通过开发 RosettaDEER 来解决这些挑战,这是 Rosetta 软件套件中的一种评分方法,能够快速模拟双电子电子共振波谱衰减轨迹和旋转标记之间的距离分布,足以从头折叠蛋白质。我们证明,所得距离分布的准确性与更计算密集型方法生成的距离分布相匹配或超过。此外,即使截断数据采集的时间窗口,这些分布生成的衰减轨迹也能再现分子间背景耦合参数。因此,RosettaDEER 可以通过使用不能通过正则化拟合方法准确转换为距离分布的衰减轨迹来区分折叠不良的模型和类似天然的模型。最后,使用两个具有挑战性的测试案例,我们证明 RosettaDEER 比以前的方法更有效地利用这些实验数据进行蛋白质折叠预测。这些基准测试结果证实,RosettaDEER 可以有效地利用稀疏的实验数据,为 Rosetta 软件套件中内置的广泛建模应用提供支持。

相似文献

引用本文的文献

2
Protein Modeling with DEER Spectroscopy.利用双电子-电子共振光谱进行蛋白质建模。
Annu Rev Biophys. 2025 May;54(1):35-57. doi: 10.1146/annurev-biophys-030524-013431. Epub 2024 Dec 17.

本文引用的文献

4
Deep neural network processing of DEER data.DEER数据的深度神经网络处理
Sci Adv. 2018 Aug 24;4(8):eaat5218. doi: 10.1126/sciadv.aat5218. eCollection 2018 Aug.
7
Protein homology model refinement by large-scale energy optimization.利用大规模能量优化进行蛋白质同源模型精修。
Proc Natl Acad Sci U S A. 2018 Mar 20;115(12):3054-3059. doi: 10.1073/pnas.1719115115. Epub 2018 Mar 5.
10
The Rosetta All-Atom Energy Function for Macromolecular Modeling and Design.用于大分子建模与设计的罗塞塔全原子能量函数。
J Chem Theory Comput. 2017 Jun 13;13(6):3031-3048. doi: 10.1021/acs.jctc.7b00125. Epub 2017 May 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验