Song Yuhua, Zhang Yongjie, Bajaj Chandrajit L, Baker Nathan A
Department of Biochemistry and Molecular Biophysics, Center for Computational Biology, Washington University in St. Louis, St. Louis, Missouri 63110, USA.
Biophys J. 2004 Sep;87(3):1558-66. doi: 10.1529/biophysj.104.041517.
As described previously, continuum models, such as the Smoluchowski equation, offer a scalable framework for studying diffusion in biomolecular systems. This work presents new developments in the efficient solution of the continuum diffusion equation. Specifically, we present methods for adaptively refining finite element solutions of the Smoluchowski equation based on a posteriori error estimates. We also describe new, molecular-surface-based models, for diffusional reaction boundary criteria and compare results obtained from these models with the traditional spherical criteria. The new methods are validated by comparison of the calculated reaction rates with experimental values for wild-type and mutant forms of mouse acetylcholinesterase. The results show good agreement with experiment and help to define optimal reactive boundary conditions.
如前所述,连续介质模型,如斯莫卢霍夫斯基方程,为研究生物分子系统中的扩散提供了一个可扩展的框架。这项工作展示了连续介质扩散方程高效求解方面的新进展。具体而言,我们提出了基于后验误差估计自适应细化斯莫卢霍夫斯基方程有限元解的方法。我们还描述了用于扩散反应边界条件的基于分子表面的新模型,并将这些模型得到的结果与传统的球形标准进行比较。通过将计算得到的反应速率与小鼠乙酰胆碱酯酶野生型和突变型的实验值进行比较,验证了新方法。结果与实验显示出良好的一致性,并有助于确定最佳反应边界条件。