Zhang Deqiang, Suen Jason, Zhang Yongjie, Song Yuhua, Radic Zoran, Taylor Palmer, Holst Michael J, Bajaj Chandrajit, Baker Nathan A, McCammon J Andrew
Howard Hughes Medical Institute, University of California at San Diego, La Jolla, California 92093, USA.
Biophys J. 2005 Mar;88(3):1659-65. doi: 10.1529/biophysj.104.053850. Epub 2004 Dec 30.
The tetramer is the most important form for acetylcholinesterase in physiological conditions, i.e., in the neuromuscular junction and the nervous system. It is important to study the diffusion of acetylcholine to the active sites of the tetrameric enzyme to understand the overall signal transduction process in these cellular components. Crystallographic studies revealed two different forms of tetramers, suggesting a flexible tetramer model for acetylcholinesterase. Using a recently developed finite element solver for the steady-state Smoluchowski equation, we have calculated the reaction rate for three mouse acetylcholinesterase tetramers using these two crystal structures and an intermediate structure as templates. Our results show that the reaction rates differ for different individual active sites in the compact tetramer crystal structure, and the rates are similar for different individual active sites in the other crystal structure and the intermediate structure. In the limit of zero salt, the reaction rates per active site for the tetramers are the same as that for the monomer, whereas at higher ionic strength, the rates per active site for the tetramers are approximately 67%-75% of the rate for the monomer. By analyzing the effect of electrostatic forces on ACh diffusion, we find that electrostatic forces play an even more important role for the tetramers than for the monomer. This study also shows that the finite element solver is well suited for solving the diffusion problem within complicated geometries.
四聚体是生理条件下乙酰胆碱酯酶最重要的形式,即在神经肌肉接头和神经系统中。研究乙酰胆碱向四聚体酶活性位点的扩散对于理解这些细胞成分中的整体信号转导过程很重要。晶体学研究揭示了两种不同形式的四聚体,这表明乙酰胆碱酯酶存在一种灵活的四聚体模型。使用最近开发的用于稳态斯莫卢霍夫斯基方程的有限元求解器,我们以这两种晶体结构和一种中间结构为模板,计算了三种小鼠乙酰胆碱酯酶四聚体的反应速率。我们的结果表明,在紧密的四聚体晶体结构中,不同的单个活性位点的反应速率不同,而在其他晶体结构和中间结构中,不同的单个活性位点的反应速率相似。在零盐浓度极限下,四聚体每个活性位点的反应速率与单体相同,而在较高离子强度下,四聚体每个活性位点的反应速率约为单体反应速率的67%-75%。通过分析静电力对乙酰胆碱扩散的影响,我们发现静电力对四聚体的作用比对单体更为重要。这项研究还表明,有限元求解器非常适合解决复杂几何形状中的扩散问题。