Nambiar Rajalakshmi, Gajraj Arivalagan, Meiners Jens-Christian
Department of Physics and Biophysics Research Division, University of Michigan, Ann Arbor, Michigan 48109-1120, USA.
Biophys J. 2004 Sep;87(3):1972-80. doi: 10.1529/biophysj.103.037697.
Optical tweezers are a powerful tool for the study of single biomolecules. Many applications require that a molecule be held under constant tension while its extension is measured. We present two schemes based on scanning-line optical tweezers to accomplish this, providing all-optical alternatives to force-clamp traps that rely on electronic feedback to maintain constant-force conditions for the molecule. In these schemes, a laser beam is rapidly scanned along a line in the focal plane of the microscope objective, effectively creating an extended one-dimensional optical potential over distances of up to 8 microm. A position-independent lateral force acting on a trapped particle is created by either modulating the laser beam intensity during the scan or by using an asymmetric beam profile in the back focal plane of the microscope objective. With these techniques, forces of up to 2.69 pN have been applied over distances of up to 3.4 microm with residual spring constants of <26.6 fN/microm. We used these techniques in conjunction with a fast position measurement scheme to study the relaxation of lambda-DNA molecules against a constant external force with submillisecond time resolution. We compare the results to predictions from the wormlike chain model.
光镊是研究单个生物分子的有力工具。许多应用要求在测量分子伸展时将其保持在恒定张力下。我们提出了两种基于扫描线光镊的方案来实现这一点,为依赖电子反馈来维持分子恒力条件的力钳阱提供了全光学替代方案。在这些方案中,激光束在显微镜物镜的焦平面内沿一条线快速扫描,有效地在长达8微米的距离上创建一个扩展的一维光学势。通过在扫描过程中调制激光束强度或在显微镜物镜的后焦平面使用不对称光束轮廓,可产生作用于捕获粒子的与位置无关的横向力。利用这些技术,在长达3.4微米的距离上施加了高达2.69皮牛的力,残余弹簧常数<26.6飞牛/微米。我们将这些技术与快速位置测量方案结合使用,以亚毫秒级的时间分辨率研究λ-DNA分子在恒定外力作用下的松弛。我们将结果与蠕虫状链模型的预测进行了比较。