Suppr超能文献

用于流感监测的网络访问日志分析

Analysis of Web access logs for surveillance of influenza.

作者信息

Johnson Heather A, Wagner Michael M, Hogan William R, Chapman Wendy, Olszewski Robert T, Dowling John, Barnas Gary

机构信息

RODS Laboratory, Center for Biomedical Informatics, University of Pittsburgh, PA 15219, USA.

出版信息

Stud Health Technol Inform. 2004;107(Pt 2):1202-6.

Abstract

The purpose of this study was to determine whether the level of influenza in a population correlates with the number of times that internet users access information about influenza on health-related Web sites. We obtained Web access logs from the Healthlink Web site. Web access logs contain information about the user and the information the user accessed, and are maintained electronically by most Web sites, including Healthlink. We developed weekly counts of the number of accesses of selected influenza-related articles on the Healthlink Web site and measured their correlation with traditional influenza surveillance data from the Centers for Disease Control and Prevention (CDC) using the cross-correlation function (CCF). We defined timeliness as the time lag at which the correlation was a maximum. There was a moderately strong correlation between the frequency of influenza-related article accesses and the CDC's traditional surveillance data, but the results on timeliness were inconclusive. With improvements in methods for performing spatial analysis of the data and the continuing increase in Web searching behavior among Americans, Web article access has the potential to become a useful data source for public health early warning systems.

摘要

本研究的目的是确定人群中的流感水平是否与互联网用户访问健康相关网站上流感信息的次数相关。我们从Healthlink网站获取了网络访问日志。网络访问日志包含有关用户以及用户访问信息的内容,并且大多数网站(包括Healthlink)都以电子方式进行维护。我们统计了Healthlink网站上选定的流感相关文章的每周访问次数,并使用互相关函数(CCF)测量了这些访问次数与美国疾病控制与预防中心(CDC)的传统流感监测数据之间的相关性。我们将及时性定义为相关性达到最大值时的时间滞后。流感相关文章的访问频率与CDC的传统监测数据之间存在中等强度的相关性,但关于及时性的结果尚无定论。随着数据空间分析方法的改进以及美国人网络搜索行为的持续增加,网络文章访问有可能成为公共卫生预警系统的有用数据源。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验