Suppr超能文献

利用空间填充指数和时频域分析心脏信号。

Analysis of cardiac signals using spatial filling index and time-frequency domain.

作者信息

Faust Oliver, Acharya U Rajendra, Krishnan S M, Min Lim Choo

机构信息

Dept. of ECE, Ngee Ann Polytechnic, Singapore 599489.

出版信息

Biomed Eng Online. 2004 Sep 10;3(1):30. doi: 10.1186/1475-925X-3-30.

Abstract

BACKGROUND

Analysis of heart rate variation (HRV) has become a popular noninvasive tool for assessing the activities of the autonomic nervous system (ANS). HRV analysis is based on the concept that fast fluctuations may specifically reflect changes of sympathetic and vagal activity. It shows that the structure generating the signal is not simply linear, but also involves nonlinear contributions. These signals are essentially non-stationary; may contain indicators of current disease, or even warnings about impending diseases. The indicators may be present at all times or may occur at random in the time scale. However, to study and pinpoint abnormalities in voluminous data collected over several hours is strenuous and time consuming.

METHODS

This paper presents the spatial filling index and time-frequency analysis of heart rate variability signal for disease identification. Renyi's entropy is evaluated for the signal in the Wigner-Ville and Continuous Wavelet Transformation (CWT) domain.

RESULTS

This Renyi's entropy gives lower 'p' value for scalogram than Wigner-Ville distribution and also, the contours of scalogram visually show the features of the diseases. And in the time-frequency analysis, the Renyi's entropy gives better result for scalogram than the Wigner-Ville distribution.

CONCLUSION

Spatial filling index and Renyi's entropy has distinct regions for various diseases with an accuracy of more than 95%.

摘要

背景

心率变异性(HRV)分析已成为评估自主神经系统(ANS)活动的一种常用非侵入性工具。HRV分析基于这样一种概念,即快速波动可能特别反映交感神经和迷走神经活动的变化。研究表明,产生信号的结构不仅是简单的线性结构,还涉及非线性因素。这些信号本质上是非平稳的;可能包含当前疾病的指标,甚至是关于即将发生疾病的预警。这些指标可能随时出现,也可能在时间尺度上随机出现。然而,研究和查明在数小时内收集的大量数据中的异常情况既费力又耗时。

方法

本文提出了用于疾病识别的心率变异性信号的空间填充指数和时频分析方法。在维格纳-威利(Wigner-Ville)域和连续小波变换(CWT)域中对信号评估雷尼熵(Renyi's entropy)。

结果

与维格纳-威利分布相比,对于小波尺度图(scalogram),这种雷尼熵给出的“p”值更低,并且小波尺度图的等高线在视觉上显示出疾病的特征。而且在时频分析中,对于小波尺度图,雷尼熵比维格纳-威利分布给出的结果更好。

结论

空间填充指数和雷尼熵对于各种疾病具有不同的区域,准确率超过95%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b79c/520829/b8f21e3c4b81/1475-925X-3-30-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验