Shaik Sason, de Visser Samuël P, Kumar Devesh
Department of Organic Chemistry and the Lise Meitner Minerva Center for Computational Quantum Chemistry, Hebrew University, 91904 Jerusalem, Israel.
J Biol Inorg Chem. 2004 Sep;9(6):661-8. doi: 10.1007/s00775-004-0576-6. Epub 2004 Jul 28.
Density functional theoretical studies of monooxygenation reactivity of the high-valent oxoiron(IV) porphyrin cation-radical compound of cytochrome P450, the so-called Compound I, and of its precursor, the ferric(III)-hydroperoxide species, are described. The degeneracy of the spin states of Compound I, its electron deficiency, and dense orbital manifold lead to two-state and multi-state reactivity scenarios and may thereby create reactivity patterns as though belonging to two or more different oxidants. Most of the controversies in the experimental data are reconciled using Compound I as the sole competent oxidant. Theory finds ferric(III)-hydroperoxide to be a very sluggish oxidant, noncompetitive with Compound I. If and when Compound I is absent, P450 oxidation will logically proceed by another form, but this has to be more reactive than ferric(III)-hydroperoxide. Theoretical studies are conducted to pinpoint such an oxidant for P450.
描述了细胞色素P450的高价氧合铁(IV)卟啉阳离子自由基化合物(即所谓的化合物I)及其前体铁(III)-氢过氧化物物种的单加氧反应性的密度泛函理论研究。化合物I自旋态的简并性、其电子缺乏以及密集的轨道流形导致了双态和多态反应性情景,从而可能产生仿佛属于两种或更多种不同氧化剂的反应模式。使用化合物I作为唯一有效的氧化剂,调和了实验数据中的大多数争议。理论发现铁(III)-氢过氧化物是一种非常缓慢的氧化剂,与化合物I无竞争性。如果且当不存在化合物I时,P450氧化将逻辑上通过另一种形式进行,但这种形式必须比铁(III)-氢过氧化物更具反应性。进行理论研究以确定P450的这种氧化剂。