Department of Biomedical Engineering, University of California, Davis, CA, USA.
Phys Med Biol. 2014 Jan 20;59(2):403-19. doi: 10.1088/0031-9155/59/2/403. Epub 2013 Dec 19.
Detecting cancerous lesions is a major clinical application in emission tomography. In previous work, we have studied penalized maximum-likelihood (PML) image reconstruction for the detection task and proposed a method to design a shift-invariant quadratic penalty function to maximize detectability of a lesion at a known location in a two dimensional image. Here we extend the regularization design to maximize detectability of lesions at unknown locations in fully 3D PET. We used a multiview channelized Hotelling observer (mvCHO) to assess the lesion detectability in 3D images to mimic the condition where a human observer examines three orthogonal views of a 3D image for lesion detection. We derived simplified theoretical expressions that allow fast prediction of the detectability of a 3D lesion. The theoretical results were used to design the regularization in PML reconstruction to improve lesion detectability. We conducted computer-based Monte Carlo simulations to compare the optimized penalty with the conventional penalty for detecting lesions of various sizes. Only true coincidence events were simulated. Lesion detectability was also assessed by two human observers, whose performances agree well with that of the mvCHO. Both the numerical observer and human observer results showed a statistically significant improvement in lesion detection by using the proposed penalty function compared to using the conventional penalty function.
检测癌性病变是发射断层成像中的一个主要临床应用。在之前的工作中,我们研究了用于检测任务的惩罚最大似然(PML)图像重建,并提出了一种设计平移不变二次惩罚函数的方法,以最大化二维图像中已知位置病变的可检测性。在这里,我们将正则化设计扩展到完全 3D PET 中以最大化未知位置病变的可检测性。我们使用多视图通道化 Hotelling 观测器(mvCHO)来评估 3D 图像中的病变可检测性,以模拟人类观察者检查 3D 图像的三个正交视图以检测病变的情况。我们推导出简化的理论表达式,允许快速预测 3D 病变的可检测性。理论结果用于设计 PML 重建中的正则化,以提高病变的可检测性。我们进行了基于计算机的蒙特卡罗模拟,以比较用于检测各种大小病变的优化惩罚与常规惩罚。仅模拟真实符合事件。病变可检测性还通过两名人类观察者进行评估,他们的表现与 mvCHO 非常吻合。数值观察者和人类观察者的结果均表明,与使用常规惩罚函数相比,使用所提出的惩罚函数可显著提高病变检测性能。