Suppr超能文献

用于在线或离线图像引导放射治疗的前列腺自动定位

Automatic localization of the prostate for on-line or off-line image-guided radiotherapy.

作者信息

Smitsmans Monique H P, Wolthaus Jochem W H, Artignan Xavier, de Bois Josien, Jaffray David A, Lebesque Joos V, van Herk Marcel

机构信息

Department of Radiotherapy, The Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital (NKI-AVL), Amsterdam, The Netherlands.

出版信息

Int J Radiat Oncol Biol Phys. 2004 Oct 1;60(2):623-35. doi: 10.1016/j.ijrobp.2004.05.027.

Abstract

PURPOSE

With higher radiation dose, higher cure rates have been reported in prostate cancer patients. The extra margin needed to account for prostate motion, however, limits the level of dose escalation, because of the presence of surrounding organs at risk. Knowledge of the precise position of the prostate would allow significant reduction of the treatment field. Better localization of the prostate at the time of treatment is therefore needed, e.g. using a cone-beam computed tomography (CT) system integrated with the linear accelerator. Localization of the prostate relies upon manual delineation of contours in successive axial CT slices or interactive alignment and is fairly time-consuming. A faster method is required for on-line or off-line image-guided radiotherapy, because of prostate motion, for patient throughput and efficiency. Therefore, we developed an automatic method to localize the prostate, based on 3D gray value registration.

METHODS AND MATERIALS

A study was performed on conventional repeat CT scans of 19 prostate cancer patients to develop the methodology to localize the prostate. For each patient, 8-13 repeat CT scans were made during the course of treatment. First, the planning CT scan and the repeat CT scan were registered onto the rigid bony structures. Then, the delineated prostate in the planning CT scan was enlarged by an optimum margin of 5 mm to define a region of interest in the planning CT scan that contained enough gray value information for registration. Subsequently, this region was automatically registered to a repeat CT scan using 3D gray value registration to localize the prostate. The performance of automatic prostate localization was compared to prostate localization using contours. Therefore, a reference set was generated by registering the delineated contours of the prostates in all scans of all patients. Gray value registrations that showed large differences with respect to contour registrations were detected with a chi(2) analysis and were removed from the data set before further analysis.

RESULTS

Comparing gray value registration to contour registration, we found a success rate of 91%. The accuracy for rotations around the left-right, cranial-caudal, and anterior-posterior axis was 2.4 degrees, 1.6 degrees, and 1.3 degrees (1 SD), respectively, and for translations along these axes 0.7, 1.3, and 1.2 mm (1 SD), respectively. A large part of the error is attributed to uncertainty in the reference contour set. Automatic prostate localization takes about 45 seconds on a 1.7 GHz Pentium IV personal computer.

CONCLUSIONS

This newly developed method localizes the prostate quickly, accurately, and with a good success rate, although visual inspection is still needed to detect outliers. With this approach, it will be possible to correct on-line or off-line for prostate movement. Combined with the conformity of intensity-modulated dose distributions, this method might permit dose escalation beyond that of current conformal approaches, because margins can be safely reduced.

摘要

目的

据报道,在前列腺癌患者中,较高的辐射剂量能带来更高的治愈率。然而,由于存在周围的危险器官,为考虑前列腺运动所需的额外边界限制了剂量递增的程度。了解前列腺的精确位置将显著缩小治疗野。因此,在治疗时需要更好地对前列腺进行定位,例如使用与直线加速器集成的锥形束计算机断层扫描(CT)系统。前列腺的定位依赖于在连续的轴向CT切片中手动勾勒轮廓或交互式对齐,这相当耗时。由于前列腺的运动,对于在线或离线图像引导放射治疗而言,为了提高患者的 throughput 和效率,需要一种更快的方法。因此,我们基于三维灰度值配准开发了一种自动定位前列腺的方法。

方法和材料

对19例前列腺癌患者的传统重复CT扫描进行了一项研究,以开发前列腺定位方法。对于每位患者,在治疗过程中进行了8 - 13次重复CT扫描。首先,将计划CT扫描和重复CT扫描配准到刚性骨结构上。然后,将计划CT扫描中勾勒出的前列腺扩大5mm的最佳边界,以在计划CT扫描中定义一个感兴趣区域,该区域包含足够的灰度值信息用于配准。随后,使用三维灰度值配准将该区域自动配准到重复CT扫描上以定位前列腺。将自动前列腺定位的性能与使用轮廓的前列腺定位进行比较。因此,通过配准所有患者所有扫描中前列腺的勾勒轮廓生成了一个参考集。通过卡方分析检测与轮廓配准有较大差异的灰度值配准,并在进一步分析之前从数据集中去除。

结果

将灰度值配准与轮廓配准进行比较,我们发现成功率为91%。围绕左右、头脚和前后轴旋转的精度分别为2.4度、1.6度和1.3度(1标准差),沿这些轴平移的精度分别为0.7、1.3和1.2mm(1标准差)。大部分误差归因于参考轮廓集的不确定性。在一台1.7GHz奔腾IV个人计算机上,自动前列腺定位大约需要45秒。

结论

这种新开发的方法能够快速、准确地定位前列腺,成功率较高,尽管仍需要目视检查以检测异常值。通过这种方法,将有可能在线或离线校正前列腺的运动。结合调强剂量分布的适形性,这种方法可能允许剂量递增超过当前的适形方法,因为边界可以安全地缩小。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验