Suppr超能文献

一种用于锥形束CT引导放射治疗中前列腺定位的深度学习框架。

A deep learning framework for prostate localization in cone beam CT-guided radiotherapy.

作者信息

Liang Xiaokun, Zhao Wei, Hristov Dimitre H, Buyyounouski Mark K, Hancock Steven L, Bagshaw Hilary, Zhang Qin, Xie Yaoqin, Xing Lei

机构信息

Department of Radiation Oncology, Stanford University, Stanford, CA, 94305, USA.

Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China.

出版信息

Med Phys. 2020 Sep;47(9):4233-4240. doi: 10.1002/mp.14355. Epub 2020 Jul 27.

Abstract

PURPOSE

To develop a deep learning-based model for prostate planning target volume (PTV) localization on cone beam computed tomography (CBCT) to improve the workflow of CBCT-guided patient setup.

METHODS

A two-step task-based residual network (T RN) is proposed to automatically identify inherent landmarks in prostate PTV. The input to the T RN is the pretreatment CBCT images of the patient, and the output is the deep learning-identified landmarks in the PTV. To ensure robust PTV localization, the T RN model is trained by using over thousand sets of CT images with labeled landmarks, each of the CTs corresponds to a different scenario of patient position and/or anatomy distribution generated by synthetically changing the planning CT (pCT) image. The changes, including translation, rotation, and deformation, represent vast possible clinical situations of anatomy variations during a course of radiation therapy (RT). The trained patient-specific T RN model is tested by using 240 CBCTs from six patients. The testing CBCTs consists of 120 original CBCTs and 120 synthetic CBCTs. The synthetic CBCTs are generated by applying rotation/translation transformations to each of the original CBCT.

RESULTS

The systematic/random setup errors between the model prediction and the reference are found to be <0.25/2.46 mm and 0.14/1.41° in translation and rotation dimensions, respectively. Pearson's correlation coefficient between model prediction and the reference is higher than 0.94 in translation and rotation dimensions. The Bland-Altman plots show good agreement between the two techniques.

CONCLUSIONS

A novel T RN deep learning technique is established to localize the prostate PTV for RT patient setup. Our results show that highly accurate marker-less prostate setup is achievable by leveraging the state-of-the-art deep learning strategy.

摘要

目的

开发一种基于深度学习的模型,用于在锥形束计算机断层扫描(CBCT)上定位前列腺计划靶区(PTV),以改善CBCT引导下患者摆位的工作流程。

方法

提出一种基于任务的两步残差网络(TRN),以自动识别前列腺PTV中的固有标志物。TRN的输入是患者的治疗前CBCT图像,输出是PTV中由深度学习识别出的标志物。为确保PTV定位的稳健性,使用超过一千组带有标记标志物的CT图像对TRN模型进行训练,每组CT对应通过综合改变计划CT(pCT)图像生成的不同患者位置和/或解剖分布情况。这些变化包括平移、旋转和变形,代表了放射治疗(RT)过程中解剖变异的各种可能临床情况。使用来自六名患者的240幅CBCT对训练好的患者特异性TRN模型进行测试。测试的CBCT包括120幅原始CBCT和120幅合成CBCT。合成CBCT是通过对每幅原始CBCT应用旋转/平移变换生成的。

结果

在平移和旋转维度上,模型预测与参考之间的系统/随机摆位误差分别发现小于0.25/2.46毫米和0.14/1.41°。在平移和旋转维度上,模型预测与参考之间的皮尔逊相关系数均高于0.94。布兰德-奥特曼图显示两种技术之间具有良好的一致性。

结论

建立了一种新颖的TRN深度学习技术,用于RT患者摆位时前列腺PTV的定位。我们的结果表明,通过利用最先进的深度学习策略,可以实现高精度的无标记前列腺摆位。

相似文献

引用本文的文献

本文引用的文献

1
Markerless Pancreatic Tumor Target Localization Enabled By Deep Learning.基于深度学习的无标记胰腺肿瘤靶区定位。
Int J Radiat Oncol Biol Phys. 2019 Oct 1;105(2):432-439. doi: 10.1016/j.ijrobp.2019.05.071. Epub 2019 Jun 13.
6
Iterative image-domain ring artifact removal in cone-beam CT.锥形束CT中迭代图像域环形伪影去除
Phys Med Biol. 2017 Jul 7;62(13):5276-5292. doi: 10.1088/1361-6560/aa7017. Epub 2017 Jun 6.
7
Segmentation of Pathological Structures by Landmark-Assisted Deformable Models.基于标志点辅助的可变形模型的病理结构分割。
IEEE Trans Med Imaging. 2017 Jul;36(7):1457-1469. doi: 10.1109/TMI.2017.2667578. Epub 2017 Feb 13.
8
Fiducial marker guided prostate radiotherapy: a review.fiducial标记引导的前列腺放疗:综述。
Br J Radiol. 2016 Dec;89(1068):20160296. doi: 10.1259/bjr.20160296. Epub 2016 Sep 23.
10
Understanding Bland Altman analysis.理解布兰德-奥特曼分析。
Biochem Med (Zagreb). 2015 Jun 5;25(2):141-51. doi: 10.11613/BM.2015.015. eCollection 2015.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验