Tateno Takashi, Pakdaman Khashayar
Department of Physiology, University of Cambridge, Downing Street, Cambridge CB2 3EG, United Kingdom.
Chaos. 2004 Sep;14(3):511-30. doi: 10.1063/1.1756118.
Determining the response characteristics of neurons to fluctuating noise-like inputs similar to realistic stimuli is essential for understanding neuronal coding. This study addresses this issue by providing a random dynamical system analysis of the Morris-Lecar neural model driven by a white Gaussian noise current. Depending on parameter selections, the deterministic Morris-Lecar model can be considered as a canonical prototype for widely encountered classes of neuronal membranes, referred to as class I and class II membranes. In both the transitions from excitable to oscillating regimes are associated with different bifurcation scenarios. This work examines how random perturbations affect these two bifurcation scenarios. It is first numerically shown that the Morris-Lecar model driven by white Gaussian noise current tends to have a unique stationary distribution in the phase space. Numerical evaluations also reveal quantitative and qualitative changes in this distribution in the vicinity of the bifurcations of the deterministic system. However, these changes notwithstanding, our numerical simulations show that the Lyapunov exponents of the system remain negative in these parameter regions, indicating that no dynamical stochastic bifurcations take place. Moreover, our numerical simulations confirm that, regardless of the asymptotic dynamics of the deterministic system, the random Morris-Lecar model stabilizes at a unique stationary stochastic process. In terms of random dynamical system theory, our analysis shows that additive noise destroys the above-mentioned bifurcation sequences that characterize class I and class II regimes in the Morris-Lecar model. The interpretation of this result in terms of neuronal coding is that, despite the differences in the deterministic dynamics of class I and class II membranes, their responses to noise-like stimuli present a reliable feature.
确定神经元对类似于现实刺激的波动噪声样输入的响应特性对于理解神经元编码至关重要。本研究通过对由白高斯噪声电流驱动的Morris-Lecar神经模型进行随机动力系统分析来解决这个问题。根据参数选择,确定性的Morris-Lecar模型可被视为广泛遇到的几类神经元膜的典型原型,称为I类和II类膜。在这两类膜中,从可兴奋状态到振荡状态的转变都与不同的分岔情况相关。这项工作研究了随机扰动如何影响这两种分岔情况。首先通过数值计算表明,由白高斯噪声电流驱动的Morris-Lecar模型在相空间中倾向于具有唯一的平稳分布。数值评估还揭示了在确定性系统分岔附近该分布的定量和定性变化。然而,尽管有这些变化,我们的数值模拟表明,在这些参数区域中系统的李雅普诺夫指数仍然为负,这表明没有发生动态随机分岔。此外,我们的数值模拟证实,无论确定性系统的渐近动力学如何,随机Morris-Lecar模型都稳定在一个唯一的平稳随机过程。从随机动力系统理论的角度来看,我们的分析表明,加性噪声破坏了上述表征Morris-Lecar模型中I类和II类状态的分岔序列。从神经元编码的角度对这一结果进行解释就是,尽管I类和II类膜的确定性动力学存在差异,但它们对噪声样刺激的响应呈现出一种可靠的特征。