Suppr超能文献

扬森和里特神经团模型的随机版本:分析与数值计算

A Stochastic Version of the Jansen and Rit Neural Mass Model: Analysis and Numerics.

作者信息

Ableidinger Markus, Buckwar Evelyn, Hinterleitner Harald

机构信息

Johannes Kepler University Linz, Altenberger Straße 69, Linz, 4040, Austria.

出版信息

J Math Neurosci. 2017 Aug 8;7(1):8. doi: 10.1186/s13408-017-0046-4.

Abstract

Neural mass models provide a useful framework for modelling mesoscopic neural dynamics and in this article we consider the Jansen and Rit neural mass model (JR-NMM). We formulate a stochastic version of it which arises by incorporating random input and has the structure of a damped stochastic Hamiltonian system with nonlinear displacement. We then investigate path properties and moment bounds of the model. Moreover, we study the asymptotic behaviour of the model and provide long-time stability results by establishing the geometric ergodicity of the system, which means that the system-independently of the initial values-always converges to an invariant measure. In the last part, we simulate the stochastic JR-NMM by an efficient numerical scheme based on a splitting approach which preserves the qualitative behaviour of the solution.

摘要

神经团模型为介观神经动力学建模提供了一个有用的框架,在本文中我们考虑扬森和里特神经团模型(JR-NMM)。我们构建了它的一个随机版本,该版本通过纳入随机输入产生,具有带非线性位移的阻尼随机哈密顿系统的结构。然后我们研究该模型的路径性质和矩界。此外,我们研究模型的渐近行为,并通过建立系统的几何遍历性来提供长期稳定性结果,这意味着该系统与初始值无关,总是收敛到一个不变测度。在最后一部分,我们通过基于分裂方法的高效数值格式模拟随机JR-NMM,该格式保留了解的定性行为。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/71ba/5567162/099928c437d2/13408_2017_46_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验