Szule Joseph A, Jung Jae Hoon, McMahan Uel J
Department of Biology, Texas A&M University, College Station, TX 77845, USA.
Department of Biology, Texas A&M University, College Station, TX 77845, USA
Philos Trans R Soc Lond B Biol Sci. 2015 Jul 5;370(1672). doi: 10.1098/rstb.2014.0189.
The docking of synaptic vesicles on the presynaptic membrane and their priming for fusion with it to mediate synaptic transmission of nerve impulses typically occur at structurally specialized regions on the membrane called active zones. Stable components of active zones include aggregates of macromolecules, 'active zone material' (AZM), attached to the presynaptic membrane, and aggregates of Ca(2+)-channels in the membrane, through which Ca(2+) enters the cytosol to trigger impulse-evoked vesicle fusion with the presynaptic membrane by interacting with Ca(2+)-sensors on the vesicles. This laboratory has used electron tomography to study, at macromolecular spatial resolution, the structure and function of AZM at the simply arranged active zones of axon terminals at frog neuromuscular junctions. The results support the conclusion that AZM directs the docking and priming of synaptic vesicles and essential positioning of Ca(2+)-channels relative to the vesicles' Ca(2+)-sensors. Here we review the findings and comment on their applicability to understanding mechanisms of docking, priming and Ca(2+)-triggering at other synapses, where the arrangement of active zone components differs.
突触小泡停靠在突触前膜上,并为与突触前膜融合做好准备以介导神经冲动的突触传递,这一过程通常发生在膜上结构特殊的区域,即活性区。活性区的稳定成分包括附着在突触前膜上的大分子聚集体,即“活性区物质”(AZM),以及膜中Ca(2+)通道的聚集体,Ca(2+)通过这些通道进入胞质溶胶,与突触小泡上的Ca(2+)传感器相互作用,从而触发冲动诱发的突触小泡与突触前膜融合。本实验室利用电子断层扫描技术,以大分子空间分辨率研究了青蛙神经肌肉接头处轴突终末简单排列的活性区中AZM的结构和功能。结果支持了这样的结论,即AZM指导突触小泡的停靠和预处理以及Ca(2+)通道相对于突触小泡Ca(2+)传感器的基本定位。在此,我们回顾这些发现,并就其在理解其他突触处的停靠、预处理和Ca(2+)触发机制方面的适用性进行评论,在这些突触中,活性区成分的排列有所不同。