Suppr超能文献

强制分离粘附在表面的红细胞:静态与动态

Enforced detachment of red blood cells adhering to surfaces: statics and dynamics.

作者信息

Pierrat Sébastien, Brochard-Wyart Françoise, Nassoy Pierre

机构信息

Laboratoire de Physico-Chimie Curie, Unité Mixte de Recherche 168, Centre National de la Recherche Scientifique, Institut Curie, Paris, France.

出版信息

Biophys J. 2004 Oct;87(4):2855-69. doi: 10.1529/biophysj.104.043695.

Abstract

We investigated the mechanical strength of adhesion and the dynamics of unbinding of red blood cells to solid surfaces. Two different situations were tested: 1), native red blood cells nonspecifically adhered to glass surfaces coated with positively charged polymers and 2), biotinylated red blood cells specifically adhered to glass surfaces decorated with streptavidin, which has a high binding affinity for biotin. We used micropipette manipulation for forming and subsequently breaking the adhesive contact through a stepwise micromechanical procedure. Analysis of cell deformations provided the relation between force and contact radius, which was found to be in good agreement with theoretical predictions. We further demonstrated that the separation energy could be precisely derived from the measure of rupture forces and the cell shape. Finally, the dynamics of detachment was analyzed as a function of the applied force and the initial size of the adhesive patch. Our experiments were supported by original theoretical predictions, which allowed us to correlate the measured separation times with the molecular parameters (e.g., activation barrier, receptor-ligand characteristic length) derived from force measurements at the single bond level.

摘要

我们研究了红细胞与固体表面的黏附机械强度以及解离动力学。测试了两种不同情况:1)天然红细胞非特异性黏附于涂有带正电聚合物的玻璃表面;2)生物素化红细胞特异性黏附于装饰有链霉亲和素的玻璃表面,链霉亲和素对生物素有高结合亲和力。我们使用微量移液器操作,通过逐步微机械程序形成并随后打破黏附接触。对细胞变形的分析给出了力与接触半径之间的关系,发现该关系与理论预测高度吻合。我们进一步证明,分离能可从破裂力的测量和细胞形状精确推导得出。最后,分析了解离动力学作为所施加力和黏附斑初始大小的函数。我们的实验得到了原始理论预测的支持,这使我们能够将测量的分离时间与从单键水平力测量得出的分子参数(例如,活化能垒、受体 - 配体特征长度)相关联。

相似文献

1
Enforced detachment of red blood cells adhering to surfaces: statics and dynamics.
Biophys J. 2004 Oct;87(4):2855-69. doi: 10.1529/biophysj.104.043695.
3
Detachment of agglutinin-bonded red blood cells. III. Mechanical analysis for large contact areas.
Biophys J. 1991 Apr;59(4):861-72. doi: 10.1016/S0006-3495(91)82298-6.
4
5
Sensitive bondforce measurements of ligand-receptor pairs with magnetic beads.
Biosens Bioelectron. 2005 Feb 15;20(8):1685-9. doi: 10.1016/j.bios.2004.06.030.
7
Neutrophil adhesive contact dependence on impingement force.
Biophys J. 2004 Dec;87(6):4237-45. doi: 10.1529/biophysj.103.031773. Epub 2004 Sep 10.
8
Detachment of agglutinin-bonded red blood cells. I. Forces to rupture molecular-point attachments.
Biophys J. 1991 Apr;59(4):838-48. doi: 10.1016/S0006-3495(91)82296-2.
9
Rheological analysis and measurement of neutrophil indentation.
Biophys J. 2004 Dec;87(6):4246-58. doi: 10.1529/biophysj.103.031765. Epub 2004 Sep 10.

引用本文的文献

1
Shape-Dependent Structural Order of Red Blood Cells.
Langmuir. 2025 Jan 28;41(3):1876-1888. doi: 10.1021/acs.langmuir.4c04335. Epub 2025 Jan 14.
2
Characterizing thrombus adhesion strength on common cardiovascular device materials.
Front Bioeng Biotechnol. 2024 Aug 14;12:1438359. doi: 10.3389/fbioe.2024.1438359. eCollection 2024.
3
Hemocompatibile Thin Films Assessed under Blood Flow Shear Forces.
Molecules. 2022 Sep 4;27(17):5696. doi: 10.3390/molecules27175696.
4
Peeling dynamics of fluid membranes bridged by molecular bonds: moving or breaking.
J R Soc Interface. 2022 Jun;19(191):20220183. doi: 10.1098/rsif.2022.0183. Epub 2022 Jun 29.
5
Holding it together: when cadherin meets cadherin.
Biophys J. 2021 Oct 5;120(19):4182-4192. doi: 10.1016/j.bpj.2021.03.025. Epub 2021 Mar 29.
6
Curvature-Driven Migration of Colloids on Tense Lipid Bilayers.
Langmuir. 2017 Jan 17;33(2):600-610. doi: 10.1021/acs.langmuir.6b03406. Epub 2016 Dec 30.
7
Characterizing cell adhesion by using micropipette aspiration.
Biophys J. 2015 Jul 21;109(2):209-19. doi: 10.1016/j.bpj.2015.06.015.
9
Three functions of cadherins in cell adhesion.
Curr Biol. 2013 Jul 22;23(14):R626-33. doi: 10.1016/j.cub.2013.06.019.
10
Tank-treading of swollen erythrocytes in shear flows.
Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Feb;85(2 Pt 1):021922. doi: 10.1103/PhysRevE.85.021922. Epub 2012 Feb 27.

本文引用的文献

1
Stability of adhesion clusters under constant force.
Phys Rev Lett. 2004 Mar 12;92(10):108102. doi: 10.1103/PhysRevLett.92.108102. Epub 2004 Mar 10.
2
Peeling model for cell detachment.
Eur Phys J E Soft Matter. 2002 May;8(1):79-97. doi: 10.1140/epje/i2002-10010-8.
3
Adhesively-tensed cell membranes: lysis kinetics and atomic force microscopy probing.
Biophys J. 2003 Oct;85(4):2746-59. doi: 10.1016/S0006-3495(03)74697-9.
5
Kinetics from nonequilibrium single-molecule pulling experiments.
Biophys J. 2003 Jul;85(1):5-15. doi: 10.1016/S0006-3495(03)74449-X.
6
Enforced unbinding of biomembranes whose mutual adhesion is mediated by a specific interaction.
Eur Biophys J. 2003 Feb;31(8):637-42. doi: 10.1007/s00249-002-0257-8. Epub 2002 Oct 24.
7
Force measurements of the alpha5beta1 integrin-fibronectin interaction.
Biophys J. 2003 Feb;84(2 Pt 1):1252-62. doi: 10.1016/S0006-3495(03)74940-6.
8
Real-time measurement of spontaneous antigen-antibody dissociation.
Biophys J. 2002 Oct;83(4):1965-73. doi: 10.1016/S0006-3495(02)73958-1.
9
Dynamic force spectroscopy to probe adhesion strength of living cells.
Phys Rev Lett. 2002 Jul 8;89(2):028101. doi: 10.1103/PhysRevLett.89.028101. Epub 2002 Jun 20.
10
Dynamic response of adhesion complexes: beyond the single-path picture.
Phys Rev E Stat Nonlin Soft Matter Phys. 2002 May;65(5 Pt 1):051910. doi: 10.1103/PhysRevE.65.051910. Epub 2002 May 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验