Suppr超能文献

酿酒酵母中ABF1和RAP1在染色质开放及转录激活增强方面的比较

Comparison of ABF1 and RAP1 in chromatin opening and transactivator potentiation in the budding yeast Saccharomyces cerevisiae.

作者信息

Yarragudi Arunadevi, Miyake Tsuyoshi, Li Rong, Morse Randall H

机构信息

Wadsworth Center, Albany, NY 12201-2002, USA.

出版信息

Mol Cell Biol. 2004 Oct;24(20):9152-64. doi: 10.1128/MCB.24.20.9152-9164.2004.

Abstract

Autonomously replicating sequence binding factor 1 (ABF1) and repressor/activator protein 1 (RAP1) from budding yeast are multifunctional, site-specific DNA-binding proteins, with roles in gene activation and repression, replication, and telomere structure and function. Previously we have shown that RAP1 can prevent nucleosome positioning in the vicinity of its binding site and have provided evidence that this ability to create a local region of "open" chromatin contributes to RAP1 function at the HIS4 promoter by facilitating binding and activation by GCN4. Here we examine and directly compare to that of RAP1 the ability of ABF1 to create a region of open chromatin near its binding site and to contribute to activated transcription at the HIS4, ADE5,7, and HIS7 promoters. ABF1 behaves similarly to RAP1 in these assays, but it shows some subtle differences from RAP1 in the character of the open chromatin region near its binding site. Furthermore, although the two factors can similarly enhance activated transcription at the promoters tested, RAP1 binding is continuously required for this enhancement, but ABF1 binding is not. These results indicate that ABF1 and RAP1 achieve functional similarity in part via mechanistically distinct pathways.

摘要

来自芽殖酵母的自主复制序列结合因子1(ABF1)和阻遏物/激活蛋白1(RAP1)是多功能的位点特异性DNA结合蛋白,在基因激活与抑制、复制以及端粒结构和功能中发挥作用。此前我们已经表明,RAP1能够阻止核小体在其结合位点附近定位,并提供了证据表明这种创建“开放”染色质局部区域的能力通过促进GCN4的结合和激活,有助于RAP1在HIS4启动子处发挥功能。在此,我们研究并直接比较了ABF1与RAP1在其结合位点附近创建开放染色质区域以及促进HIS4、ADE5,7和HIS7启动子处激活转录的能力。在这些实验中,ABF1的表现与RAP1相似,但在其结合位点附近开放染色质区域的特征上,它与RAP1存在一些细微差异。此外,尽管这两种因子能够同样地增强所测试启动子处的激活转录,但这种增强持续需要RAP1的结合,而ABF1的结合则不需要。这些结果表明,ABF1和RAP1部分地通过机制不同的途径实现功能相似性。

相似文献

2
3
Chromatin opening and transactivator potentiation by RAP1 in Saccharomyces cerevisiae.
Mol Cell Biol. 1999 Aug;19(8):5279-88. doi: 10.1128/MCB.19.8.5279.
4
5
Promoter architecture and transcriptional regulation of Abf1-dependent ribosomal protein genes in Saccharomyces cerevisiae.
Nucleic Acids Res. 2016 Jul 27;44(13):6113-26. doi: 10.1093/nar/gkw194. Epub 2016 Mar 25.
6
Functions of protosilencers in the formation and maintenance of heterochromatin in Saccharomyces cerevisiae.
PLoS One. 2012;7(5):e37092. doi: 10.1371/journal.pone.0037092. Epub 2012 May 17.
7
Regulation of HIS4 expression by the Saccharomyces cerevisiae SIN4 transcriptional regulator.
Genetics. 1995 May;140(1):103-14. doi: 10.1093/genetics/140.1.103.
8
Fine-structure analysis of ribosomal protein gene transcription.
Mol Cell Biol. 2006 Jul;26(13):4853-62. doi: 10.1128/MCB.02367-05.
10
Chromatin Fiber Invasion and Nucleosome Displacement by the Rap1 Transcription Factor.
Mol Cell. 2020 Feb 6;77(3):488-500.e9. doi: 10.1016/j.molcel.2019.10.025. Epub 2019 Nov 21.

引用本文的文献

1
Engineering artificial cross-species promoters with different transcriptional strengths.
Synth Syst Biotechnol. 2024 Aug 8;10(1):49-57. doi: 10.1016/j.synbio.2024.08.003. eCollection 2025.
4
Ruler elements in chromatin remodelers set nucleosome array spacing and phasing.
Nat Commun. 2021 May 28;12(1):3232. doi: 10.1038/s41467-021-23015-0.
5
Genome-wide off-rates reveal how DNA binding dynamics shape transcription factor function.
Mol Syst Biol. 2020 Oct;16(10):e9885. doi: 10.15252/msb.20209885.
6
Shelterin Complex at Telomeres: Implications in Ageing.
Clin Interv Aging. 2020 Jun 3;15:827-839. doi: 10.2147/CIA.S256425. eCollection 2020.
10
Systematic Study of Nucleosome-Displacing Factors in Budding Yeast.
Mol Cell. 2018 Jul 19;71(2):294-305.e4. doi: 10.1016/j.molcel.2018.06.017. Epub 2018 Jul 12.

本文引用的文献

1
Coregulator-dependent facilitation of chromatin occupancy by GATA-1.
Proc Natl Acad Sci U S A. 2004 Jan 27;101(4):980-5. doi: 10.1073/pnas.0307612100. Epub 2004 Jan 8.
3
Getting into chromatin: how do transcription factors get past the histones?
Biochem Cell Biol. 2003 Jun;81(3):101-12. doi: 10.1139/o03-039.
4
The different (sur)faces of Rap1p.
Mol Genet Genomics. 2003 Mar;268(6):791-8. doi: 10.1007/s00438-002-0801-3. Epub 2003 Jan 25.
5
Global and specific transcriptional repression by the histone H3 amino terminus in yeast.
Proc Natl Acad Sci U S A. 2003 Apr 1;100(7):4084-9. doi: 10.1073/pnas.0637524100. Epub 2003 Mar 20.
6
Collaborative competition mechanism for gene activation in vivo.
Mol Cell Biol. 2003 Mar;23(5):1623-32. doi: 10.1128/MCB.23.5.1623-1632.2003.
7
Rap1p and other transcriptional regulators can function in defining distinct domains of gene expression.
Nucleic Acids Res. 2003 Feb 15;31(4):1224-33. doi: 10.1093/nar/gkg200.
8
General regulatory factors (GRFs) as genome partitioners.
J Biol Chem. 2002 Nov 1;277(44):41736-43. doi: 10.1074/jbc.M202578200. Epub 2002 Aug 27.
9
Activator-specific recruitment of TFIID and regulation of ribosomal protein genes in yeast.
Mol Cell. 2002 Apr;9(4):823-33. doi: 10.1016/s1097-2765(02)00490-2.
10
Precision and functional specificity in mRNA decay.
Proc Natl Acad Sci U S A. 2002 Apr 30;99(9):5860-5. doi: 10.1073/pnas.092538799. Epub 2002 Apr 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验