Suppr超能文献

突触稳态和输入选择性源自钙依赖可塑性模型。

Synaptic homeostasis and input selectivity follow from a calcium-dependent plasticity model.

作者信息

Yeung Luk Chong, Shouval Harel Z, Blais Brian S, Cooper Leon N

机构信息

Institute for Brain and Neural Systems, Department of Physics, Brown University, Providence, RI 02912, USA.

出版信息

Proc Natl Acad Sci U S A. 2004 Oct 12;101(41):14943-8. doi: 10.1073/pnas.0405555101. Epub 2004 Oct 4.

Abstract

Modifications in the strengths of synapses are thought to underlie memory, learning, and development of cortical circuits. Many cellular mechanisms of synaptic plasticity have been investigated in which differential elevations of postsynaptic calcium concentrations play a key role in determining the direction and magnitude of synaptic changes. We have previously described a model of plasticity that uses calcium currents mediated by N-methyl-D-aspartate receptors as the associative signal for Hebbian learning. However, this model is not completely stable. Here, we propose a mechanism of stabilization through homeostatic regulation of intracellular calcium levels. With this model, synapses are stable and exhibit properties such as those observed in metaplasticity and synaptic scaling. In addition, the model displays synaptic competition, allowing structures to emerge in the synaptic space that reflect the statistical properties of the inputs. Therefore, the combination of a fast calcium-dependent learning and a slow stabilization mechanism can account for both the formation of selective receptive fields and the maintenance of neural circuits in a state of equilibrium.

摘要

突触强度的改变被认为是记忆、学习和皮质回路发育的基础。人们已经研究了许多突触可塑性的细胞机制,其中突触后钙浓度的差异升高在决定突触变化的方向和幅度方面起着关键作用。我们之前描述了一种可塑性模型,该模型使用由N-甲基-D-天冬氨酸受体介导的钙电流作为赫布学习的关联信号。然而,这个模型并不完全稳定。在这里,我们提出了一种通过细胞内钙水平的稳态调节来实现稳定的机制。在这个模型中,突触是稳定的,并表现出诸如在元可塑性和突触缩放中观察到的那些特性。此外,该模型还显示出突触竞争,使得在突触空间中出现反映输入统计特性的结构。因此,快速的钙依赖学习和缓慢的稳定机制相结合,可以解释选择性感受野的形成以及神经回路在平衡状态下的维持。

相似文献

9
Homeostatic synaptic scaling in self-organizing maps.自组织映射中的稳态突触缩放
Neural Netw. 2006 Jul-Aug;19(6-7):734-43. doi: 10.1016/j.neunet.2006.05.006. Epub 2006 Jun 19.
10
Synaptic plasticity: taming the beast.突触可塑性:驯服这头野兽。
Nat Neurosci. 2000 Nov;3 Suppl:1178-83. doi: 10.1038/81453.

引用本文的文献

3
Heterosynaptic plasticity-induced modulation of synapses.异突触可塑性诱导的突触调制。
J Physiol Sci. 2023 Dec 6;73(1):33. doi: 10.1186/s12576-023-00893-1.
9
Degeneracy in hippocampal physiology and plasticity.海马体生理学和可塑性的退化。
Hippocampus. 2019 Oct;29(10):980-1022. doi: 10.1002/hipo.23139. Epub 2019 Jul 13.
10
Emergent Dynamical Properties of the BCM Learning Rule.BCM学习规则的涌现动力学特性
J Math Neurosci. 2017 Dec;7(1):2. doi: 10.1186/s13408-017-0044-6. Epub 2017 Feb 20.

本文引用的文献

2
Analysis of the intraspinal calcium dynamics and its implications for the plasticity of spiking neurons.脊髓内钙动力学分析及其对发放神经元可塑性的影响。
Phys Rev E Stat Nonlin Soft Matter Phys. 2004 Jan;69(1 Pt 1):011907. doi: 10.1103/PhysRevE.69.011907. Epub 2004 Jan 26.
3
Relating STDP to BCM.将尖峰时间依赖可塑性与BCM理论相关联。
Neural Comput. 2003 Jul;15(7):1511-23. doi: 10.1162/089976603321891783.
7
A unified model of NMDA receptor-dependent bidirectional synaptic plasticity.NMDA受体依赖性双向突触可塑性的统一模型。
Proc Natl Acad Sci U S A. 2002 Aug 6;99(16):10831-6. doi: 10.1073/pnas.152343099. Epub 2002 Jul 22.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验