Scatena Roberto, Messana Irene, Martorana Giuseppe Ettore, Gozzo Maria Luisa, Lippa Silvio, Maccaglia Alessandro, Bottoni Patrizia, Vincenzoni Federica, Nocca Giuseppina, Castagnola Massimo, Giardina Bruno
Istituto di Biochimica e Biochimica Clinica, Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, Largo F. Vito 1, 00168 Rome, Italy.
J Biochem Mol Biol. 2004 Jul 31;37(4):454-9. doi: 10.5483/bmbrep.2004.37.4.454.
Experimental hyperoxia represents a suitable in vitro model to study some pathogenic mechanisms related to oxidative stress. Moreover, it allows the investigation of the molecular pathophysiology underlying oxygen therapy and toxicity. In this study, a modified experimental set up was adopted to accomplish a model of moderate hyperoxia (50% O(2), 96 h culture) to induce oxidative stress in the human leukemia cell line, U-937. Spectrophotometric measurements of mitochondrial respiratory enzyme activities, NMR spectroscopy of culture media, determination of antioxidant enzyme activities, and cell proliferation and differentiation assays were performed. The data showed that moderate hyperoxia in this myeloid cell line causes: i) intriguing alterations in the mitochondrial activities at the levels of succinate dehydrogenase and succinate-cytochrome c reductase; ii) induction of metabolic compensatory adaptations, with significant shift to glycolysis; iii) induction of different antioxidant enzyme activities; iv) significant cell growth inhibition and v) no significant apoptosis. This work will permit better characterization the mitochondrial damage induced by hyperoxia. In particular, the data showed a large increase in the succinate cytochrome c reductase activity, which could be a fundamental pathogenic mechanism at the basis of oxygen toxicity.
实验性高氧是一种合适的体外模型,可用于研究与氧化应激相关的一些致病机制。此外,它还能用于研究氧疗和毒性背后的分子病理生理学。在本研究中,采用了一种改良的实验装置来构建中度高氧模型(50% O₂,培养96小时),以在人白血病细胞系U-937中诱导氧化应激。进行了线粒体呼吸酶活性的分光光度测量、培养基的核磁共振光谱分析、抗氧化酶活性的测定以及细胞增殖和分化测定。数据表明,该髓系细胞系中的中度高氧会导致:i)琥珀酸脱氢酶和琥珀酸 - 细胞色素c还原酶水平的线粒体活性发生有趣的改变;ii)诱导代谢代偿性适应,显著转向糖酵解;iii)诱导不同抗氧化酶活性;iv)显著抑制细胞生长;v)无明显凋亡。这项工作将有助于更好地表征高氧诱导的线粒体损伤。特别是,数据显示琥珀酸细胞色素c还原酶活性大幅增加,这可能是氧毒性的一个基本致病机制。