Department of Anesthesiology, Texas Tech University Health Sciences Center, Lubbock, Texas, United States of America.
PLoS One. 2013 Sep 2;8(9):e73358. doi: 10.1371/journal.pone.0073358. eCollection 2013.
High levels of oxygen (hyperoxia) are frequently used in critical care units and in conditions of respiratory insufficiencies in adults, as well as in infants. However, hyperoxia has been implicated in a number of pulmonary disorders including bronchopulmonary dysplasia (BPD) and adult respiratory distress syndrome (ARDS). Hyperoxia increases the generation of reactive oxygen species (ROS) in the mitochondria that could impair the function of the mitochondrial electron transport chain. We analyzed lung mitochondrial function in hyperoxia using the XF24 analyzer (extracellular flux) and optimized the assay for lung epithelial cells and mitochondria isolated from lungs of mice. Our data show that hyperoxia decreases basal oxygen consumption rate (OCR), spare respiratory capacity, maximal respiration and ATP turnover in MLE-12 cells. There was significant decrease in glycolytic capacity and glycolytic reserve in MLE-12 cells exposed to hyperoxia. Using mitochondria isolated from lungs of mice exposed to hyperoxia or normoxia we have shown that hyperoxia decreased the basal, state 3 and state3 μ (respiration in an uncoupled state) respirations. Further, using substrate or inhibitor of a specific complex we show that the OCR via complex I and II, but not complex IV was decreased, demonstrating that complexes I and II are specific targets of hyperoxia. Further, the activities of complex I (NADH dehydrogenase, NADH-DH) and complex II (succinate dehydrogenase, SDH) were decreased in hyperoxia, but the activity of complex IV (cytochrome oxidase, COX) remains unchanged. Taken together, our study show that hyperoxia impairs glycolytic and mitochondrial energy metabolism in in tact cells, as well as in lungs of mice by selectively inactivating components of electron transport system.
高氧(hyperoxia)水平在重症监护病房和成人呼吸不足的情况下经常被使用,也用于婴儿。然而,高氧已被牵连到许多肺部疾病中,包括支气管肺发育不良(BPD)和成人呼吸窘迫综合征(ARDS)。高氧会增加线粒体中活性氧(ROS)的产生,从而损害线粒体电子传递链的功能。我们使用 XF24 分析仪(细胞外通量)分析了高氧条件下的肺线粒体功能,并优化了用于分离来自小鼠肺的上皮细胞和线粒体的测定方法。我们的数据表明,高氧降低了 MLE-12 细胞中的基础耗氧量(OCR)、备用呼吸能力、最大呼吸和 ATP 周转率。暴露于高氧的 MLE-12 细胞的糖酵解能力和糖酵解储备显著下降。使用从暴露于高氧或常氧的小鼠肺中分离的线粒体,我们发现高氧降低了基础、状态 3 和状态 3 μ(解偶联状态下的呼吸)呼吸。此外,使用特定复合物的底物或抑制剂,我们表明通过复合物 I 和 II 的 OCR,但不是复合物 IV 降低,表明复合物 I 和 II 是高氧的特定靶标。此外,复合物 I(NADH 脱氢酶,NADH-DH)和复合物 II(琥珀酸脱氢酶,SDH)的活性在高氧中降低,但复合物 IV(细胞色素氧化酶,COX)的活性保持不变。总之,我们的研究表明,高氧通过选择性失活电子传递系统的组件,损害了完整细胞以及小鼠肺部的糖酵解和线粒体能量代谢。