Nicholson Jeremy K, Holmes Elaine, Lindon John C, Wilson Ian D
Biological Chemistry, Biomedical Sciences Division, Imperial College London, Sir Alexander Fleming Building, South Kensington, London SW7 2AZ, UK.
Nat Biotechnol. 2004 Oct;22(10):1268-74. doi: 10.1038/nbt1015.
Understanding the relationships between human genetic factors, the risks of developing major diseases and the molecular basis of drug efficacy and toxicity is a fundamental problem in modern biology. Predicting biological outcomes on the basis of genomic data is a major challenge because of the interactions of specific genetic profiles with numerous environmental factors that may conditionally influence disease risks in a nonlinear fashion. 'Global' systems biology attempts to integrate multivariate biological information to better understand the interaction of genes with the environment. The measurement and modeling of such diverse information sets is difficult at the analytical and bioinformatic modeling levels. Highly complex animals such as humans can be considered 'superorganisms' with an internal ecosystem of diverse symbiotic microbiota and parasites that have interactive metabolic processes. We now need novel approaches to measure and model metabolic compartments in interacting cell types and genomes that are connected by cometabolic processes in symbiotic mammalian systems.
了解人类遗传因素、重大疾病发生风险以及药物疗效和毒性的分子基础之间的关系是现代生物学中的一个基本问题。基于基因组数据预测生物学结果是一项重大挑战,因为特定基因谱与众多环境因素相互作用,这些环境因素可能以非线性方式有条件地影响疾病风险。“全球”系统生物学试图整合多变量生物信息,以更好地理解基因与环境的相互作用。在分析和生物信息学建模层面,对如此多样的信息集进行测量和建模是困难的。像人类这样高度复杂的动物可被视为“超级生物体”,其具有由多样共生微生物群和寄生虫组成的内部生态系统,这些微生物群和寄生虫有着相互作用的代谢过程。我们现在需要新的方法来测量和建模相互作用的细胞类型和基因组中的代谢区室,这些细胞类型和基因组通过共生哺乳动物系统中的共代谢过程相互连接。