Kawamura Hajime, Kobayashi Masato, Li Qing, Yamanishi Shigeki, Katsumura Kozo, Minami Masahiro, Wu David M, Puro Donald G
Department of Ophthalmology and Visual Sciences, University of Michigan, 1000 Wall Street, Ann Arbor, MI 48105, USA.
J Physiol. 2004 Dec 15;561(Pt 3):671-83. doi: 10.1113/jphysiol.2004.073098. Epub 2004 Oct 14.
The aim of this study was to identify the mechanisms by which angiotensin II alters the physiology of the pericyte-containing microvasculature of the retina. Despite evidence that this vasoactive signal regulates capillary perfusion by inducing abluminal pericytes to contract and thereby microvascular lumens to constrict, little is known about the events linking angiotensin exposure with pericyte contraction. Here, using microvessels freshly isolated from the adult rat retina, we monitored pericyte currents via perforated-patch pipettes, measured pericyte calcium levels with fura-2 and visualized pericyte contractions and lumen constrictions by time-lapse photography. We found that angiotensin activates nonspecific cation (NSC) and calcium-activated chloride channels; the opening of these channels induces a depolarization that is sufficient to activate the voltage-dependent calcium channels (VDCCs) expressed in the retinal microvasculature. Associated with these changes in ion channel activity, intracellular calcium levels rise, pericytes contract and microvascular lumens narrow. Our experiments revealed that an influx of calcium through the NSC channels is an essential step linking the activation of AT(1) angiotensin receptors with pericyte contraction. Although not required in order for angiotensin to induce pericytes to contract, calcium entry via VDCCs serves to enhance the contractile response of these cells. In addition to activating nonspecific cation, calcium-activated chloride and voltage-dependent calcium channels, angiotensin II also causes the functional uncoupling of pericytes from their microvascular neighbours. This inhibition of gap junction-mediated intercellular communication suggests a previously unappreciated complexity in the spatiotemporal dynamics of the microvascular response to angiotensin II.
本研究的目的是确定血管紧张素II改变视网膜含周细胞的微血管生理功能的机制。尽管有证据表明这种血管活性信号通过诱导管腔外的周细胞收缩从而使微血管腔收缩来调节毛细血管灌注,但对于将血管紧张素暴露与周细胞收缩联系起来的事件却知之甚少。在这里,我们使用从成年大鼠视网膜新鲜分离的微血管,通过穿孔膜片吸管监测周细胞电流,用fura-2测量周细胞钙水平,并通过延时摄影观察周细胞收缩和管腔收缩。我们发现血管紧张素激活非特异性阳离子(NSC)通道和钙激活氯通道;这些通道的开放诱导去极化,该去极化足以激活视网膜微血管中表达的电压依赖性钙通道(VDCCs)。与离子通道活性的这些变化相关,细胞内钙水平升高,周细胞收缩,微血管腔变窄。我们的实验表明,通过NSC通道的钙内流是将AT(1)血管紧张素受体激活与周细胞收缩联系起来的关键步骤。虽然血管紧张素诱导周细胞收缩并不需要通过VDCCs进入钙,但通过VDCCs进入的钙有助于增强这些细胞的收缩反应。除了激活非特异性阳离子通道、钙激活氯通道和电压依赖性钙通道外,血管紧张素II还导致周细胞与其微血管邻居之间的功能解偶联。这种对缝隙连接介导的细胞间通讯的抑制表明,微血管对血管紧张素II反应的时空动态存在以前未被认识到的复杂性。