Janisch Kerstin M, Williamson Gary, Needs Paul, Plumb Geoffrey W
Technical University of Munich, WZW Department of Plant Sciences, Institute of Phytopathology, Am Hochanger 2, 85350 Freising-Weihenstephan, Germany.
Free Radic Res. 2004 Aug;38(8):877-84. doi: 10.1080/10715760410001728415.
Quercetin is an important dietary flavonoid with in vitro antioxidant activity. However, it is found in human plasma as conjugates with glucuronic acid, sulfate or methyl groups, with no significant amounts of free quercetin present. The antioxidant properties of the conjugates found in vivo and their binding to serum albumin are unknown, but essential for understanding possible actions of quercetin in vivo. We, therefore, tested the most abundant human plasma quercetin conjugates, quercetin-3-glucuronide, quercetin-3'-sulfate and isorhamnetin-3-glucuronide, for their ability to inhibit Cu(II)-induced oxidation of human low density lipoprotein and to bind to human albumin, in comparison to free flavonoids and other quercetin conjugates. LDL oxidation lag time was increased by up to four times by low (<2 microM) concentrations of quercetin-3-glucuronide, but was unaffected by equivalent concentrations of quercetin-3'-sulfate and isorhamnetin-3-glucuronide. In general, the compounds under study prolonged the lag time of copper-induced LDL oxidation in the order: quercetin-7-glucuronide > quercetin > quercetin-3-glucuronide = quercetin-3-glucoside > catechin > quercetin-4'-glucuronide > isorhamnetin-3-glucuronide > quercetin-3'-sulfate. Thus the proposed products of small intestine metabolism (quercetin-7-glucuronide, quercetin-3-glucuronide) are more efficient antioxidants than subsequent liver metabolites (isorhamnetin-3-glucuronide, quercetin-3'-sulfate). Albumin-bound conjugates retained their property of protecting LDL from oxidation, although the order of efficacy was altered (quercetin-3'-sulfate > quercetin-7-glucuronide > quercetin-3-glucuronide > quercetin-4'-glucuronide = isorahmnetin-3-glucuronide). Kq values (concentration required to achieve 50% quenching) for albumin binding, as assessed by fluorescence quenching of Trp214, were as follows: quercetin-3'-sulfate (approximately 4 microM)= quercetin > or = quercetin-7-glucuronide > quercetin-3-glucuronide = quercetin-3-glucoside > isorhamnetin-3-glucuronide > quercetin-4'-glucuronide (approximately 20 microM). The data show that flavonoid intestinal and hepatic metabolism have profound effects on ability to inhibit LDL oxidation and a lesser but significant effect on binding to serum albumin.
槲皮素是一种重要的膳食类黄酮,具有体外抗氧化活性。然而,在人体血浆中,它以与葡萄糖醛酸、硫酸盐或甲基结合的形式存在,几乎没有游离的槲皮素。体内发现的这些结合物的抗氧化特性及其与血清白蛋白的结合情况尚不清楚,但对于理解槲皮素在体内可能的作用至关重要。因此,我们测试了人体血浆中最丰富的槲皮素结合物,即槲皮素 - 3 - 葡萄糖醛酸苷、槲皮素 - 3'- 硫酸盐和异鼠李素 - 3 - 葡萄糖醛酸苷,与游离类黄酮和其他槲皮素结合物相比,它们抑制铜(II)诱导的人低密度脂蛋白氧化以及与人白蛋白结合的能力。低浓度(<2 microM)的槲皮素 - 3 - 葡萄糖醛酸苷可使低密度脂蛋白氧化滞后时间增加多达四倍,但同等浓度的槲皮素 - 3'- 硫酸盐和异鼠李素 - 3 - 葡萄糖醛酸苷对此没有影响。总体而言,所研究的化合物延长铜诱导的低密度脂蛋白氧化滞后时间的顺序为:槲皮素 - 7 - 葡萄糖醛酸苷>槲皮素>槲皮素 - 3 - 葡萄糖醛酸苷 = 槲皮素 - 3 - 葡萄糖苷>儿茶素>槲皮素 - 4'- 葡萄糖醛酸苷>异鼠李素 - 3 - 葡萄糖醛酸苷>槲皮素 - 3'- 硫酸盐。因此,小肠代谢的推测产物(槲皮素 - 7 - 葡萄糖醛酸苷、槲皮素 - 3 - 葡萄糖醛酸苷)比随后的肝脏代谢产物(异鼠李素 - 3 - 葡萄糖醛酸苷、槲皮素 - 3'- 硫酸盐)是更有效的抗氧化剂。与白蛋白结合的结合物保留了保护低密度脂蛋白免受氧化的特性,尽管功效顺序有所改变(槲皮素 - 3'- 硫酸盐>槲皮素 - 7 - 葡萄糖醛酸苷>槲皮素 - 3 - 葡萄糖醛酸苷>槲皮素 - 4'- 葡萄糖醛酸苷 = 异鼠李素 - 3 - 葡萄糖醛酸苷)。通过色氨酸214的荧光猝灭评估的白蛋白结合的Kq值(达到50%猝灭所需的浓度)如下:槲皮素 - 3'- 硫酸盐(约4 microM)=槲皮素≥槲皮素 - 7 - 葡萄糖醛酸苷>槲皮素 - 3 - 葡萄糖醛酸苷 = 槲皮素 - 3 - 葡萄糖苷>异鼠李素 - 3 - 葡萄糖醛酸苷>槲皮素 - 4'- 葡萄糖醛酸苷(约20 microM)。数据表明,类黄酮的肠道和肝脏代谢对抑制低密度脂蛋白氧化的能力有深远影响,对与血清白蛋白结合的影响较小但显著。