Suppr超能文献

通过学习到的衰老模板分解正常衰老和阿尔茨海默病在脑形态变化中的影响。

Decomposing the effect of normal aging and Alzheimer's disease in brain morphological changes via learned aging templates.

作者信息

Fu Jingru, Ferreira Daniel, Smedby Örjan, Moreno Rodrigo

机构信息

Division of Biomedical Imaging, Department of Biomedical Engineering and Health Systems, KTH Royal Institute of Technology, 14157, Stockholm, Sweden.

Division of Clinical Geriatrics, Centre for Alzheimer Research, Department of Neurobiology, Care Sciences, and Society, Karolinska Institute, 14186, Stockholm, Sweden.

出版信息

Sci Rep. 2025 Apr 7;15(1):11813. doi: 10.1038/s41598-025-96234-w.

Abstract

Alzheimer's disease (AD) subjects usually show more profound morphological changes with time compared to cognitively normal (CN) individuals. These changes are the combination of two major biological processes: normal aging and AD pathology. Investigating normal aging and residual morphological changes separately can increase our understanding of the disease. This paper proposes two scores, the aging score (AS) and the AD-specific score (ADS), whose purpose is to measure these two components of brain atrophy independently. For this, in the first step, we estimate the atrophy due to the normal aging of CN subjects by computing the expected deformation required to match imaging templates generated at different ages. We used a state-of-the-art generative deep learning model for generating such imaging templates. In the second step, we apply deep learning-based diffeomorphic registration to align the given image of a subject with a reference imaging template. Parametrization of this deformation field is then decomposed voxel-wise into their parallel and perpendicular components with respect to the parametrization of the expected atrophy of CN individuals in one year computed in the first step. AS and ADS are the normalized scores of these two components, respectively. We evaluated these two scores on the OASIS-3 dataset with 1,014 T1-weighted MRI scans. Of these, 326 scans were from CN subjects, and 688 scans were from subjects diagnosed with AD at various stages of clinical severity, as defined by clinical dementia rating (CDR) scores. Our results reveal that AD is marked by both disease-specific brain changes and an accelerated aging process. Such changes affect brain regions differently. Moreover, the proposed scores were sensitive to detect changes in the early stages of the disease, which is promising for its potential future use in clinical studies. Our code is freely available at https://github.com/Fjr9516/DBM_with_DL .

摘要

与认知正常(CN)个体相比,阿尔茨海默病(AD)患者通常会随着时间的推移表现出更显著的形态学变化。这些变化是两个主要生物学过程的结合:正常衰老和AD病理。分别研究正常衰老和残留形态学变化可以增进我们对该疾病的理解。本文提出了两个评分,即衰老评分(AS)和AD特异性评分(ADS),其目的是独立测量脑萎缩的这两个组成部分。为此,在第一步中,我们通过计算匹配不同年龄生成的成像模板所需的预期变形来估计CN受试者正常衰老导致的萎缩。我们使用了一种先进的生成式深度学习模型来生成此类成像模板。在第二步中,我们应用基于深度学习的微分同胚配准将受试者的给定图像与参考成像模板对齐。然后,相对于第一步计算的CN个体一年内预期萎缩的参数化,将该变形场的参数化按体素分解为其平行和垂直分量。AS和ADS分别是这两个分量的归一化评分。我们在包含1014次T1加权MRI扫描的OASIS - 3数据集上评估了这两个评分。其中,326次扫描来自CN受试者,688次扫描来自根据临床痴呆评定量表(CDR)评分定义的处于临床严重程度不同阶段的AD诊断受试者。我们的结果表明,AD的特征是疾病特异性脑变化和加速衰老过程。这些变化对脑区的影响不同。此外,所提出的评分对疾病早期阶段的变化敏感,这为其在未来临床研究中的潜在应用带来了希望。我们的代码可在https://github.com/Fjr9516/DBM_with_DL上免费获取。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4b24/11973214/8ecc7fa76a56/41598_2025_96234_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验