Suppr超能文献

用于条件脑模板的深度微分同胚网络

Deep-Diffeomorphic Networks for Conditional Brain Templates.

作者信息

Whitbread Luke, Laurenz Stephan, Palmer Lyle J, Jenkinson Mark

机构信息

Australian Institute for Machine Learning (AIML), The University of Adelaide, Adelaide, Australia.

South Australian Health and Medical Research Institute (SAHMRI), Adelaide, Australia.

出版信息

Hum Brain Mapp. 2025 Jun 1;46(8):e70229. doi: 10.1002/hbm.70229.

Abstract

Deformable brain templates are an important tool in many neuroimaging analyses. Conditional templates (e.g., age-specific templates) have advantages over single population templates by enabling improved registration accuracy and capturing common processes in brain development and degeneration. Conventional methods require large, evenly spread cohorts to develop conditional templates, limiting their ability to create templates that could reflect richer combinations of clinical and demographic variables. More recent deep-learning methods, which can infer relationships in very high-dimensional spaces, open up the possibility of producing conditional templates that are jointly optimised for these richer sets of conditioning parameters. We have built on recent deep-learning template generation approaches using a diffeomorphic (topology-preserving) framework to create a purely geometric method of conditional template construction that learns diffeomorphisms between: (i) a global or group template and conditional templates, and (ii) conditional templates and individual brain scans. We evaluated our method, as well as other recent deep-learning approaches, on a data set of cognitively normal (CN) participants from the Alzheimer's Disease Neuroimaging Initiative (ADNI), using age as the conditioning parameter of interest. We assessed the effectiveness of these networks at capturing age-dependent anatomical differences. Our results demonstrate that while the assessed deep-learning methods have a number of strengths, they require further refinement to capture morphological changes in ageing brains with an acceptable degree of accuracy. The volumetric output of our method, and other recent deep-learning approaches, across four brain structures (grey matter, white matter, the lateral ventricles and the hippocampus), was measured and showed that although each of the methods captured some changes well, each method was unable to accurately track changes in all of the volumes. However, as our method is purely geometric, it was able to produce T1-weighted conditional templates with high spatial fidelity and with consistent topology as age varies, making these conditional templates advantageous for spatial registrations. The use of diffeomorphisms in these deep-learning methods represents an important strength of these approaches, as they can produce conditional templates that can be explicitly linked, geometrically, across age as well as to fixed, unconditional templates or brain atlases. The use of deep learning in conditional template generation provides a framework for creating templates for more complex sets of conditioning parameters, such as pathologies and demographic variables, in order to facilitate a broader application of conditional brain templates in neuroimaging studies. This can aid researchers and clinicians in their understanding of how brain structure changes over time and under various interventions, with the ultimate goal of improving the calibration of treatments and interventions in personalised medicine. The code to implement our conditional brain template network is available at: github.com/lwhitbread/deep-diff.

摘要

可变形脑模板是许多神经影像学分析中的重要工具。条件模板(例如特定年龄模板)比单总体模板具有优势,它能提高配准精度,并捕捉大脑发育和退化中的常见过程。传统方法需要大量分布均匀的队列来开发条件模板,这限制了它们创建能够反映临床和人口统计学变量更丰富组合的模板的能力。最近的深度学习方法能够在非常高维的空间中推断关系,为生成针对这些更丰富的条件参数集进行联合优化的条件模板开辟了可能性。我们基于最近的深度学习模板生成方法,使用微分同胚(拓扑保持)框架创建了一种纯几何的条件模板构建方法,该方法学习以下两者之间的微分同胚:(i)全局或群体模板与条件模板,以及(ii)条件模板与个体脑部扫描。我们在来自阿尔茨海默病神经影像学倡议(ADNI)的认知正常(CN)参与者数据集上评估了我们的方法以及其他最近的深度学习方法,将年龄作为感兴趣的条件参数。我们评估了这些网络在捕捉年龄相关解剖差异方面的有效性。我们的结果表明,虽然评估的深度学习方法有许多优点,但它们需要进一步改进,以在可接受的精度水平上捕捉衰老大脑中的形态变化。我们测量了我们的方法以及其他最近的深度学习方法在四个脑结构(灰质、白质、侧脑室和海马体)上的体积输出,结果表明虽然每种方法都能较好地捕捉一些变化,但每种方法都无法准确跟踪所有体积中的变化。然而,由于我们的方法是纯几何的,它能够生成具有高空间保真度且随着年龄变化具有一致拓扑结构的T1加权条件模板,这使得这些条件模板在空间配准方面具有优势。在这些深度学习方法中使用微分同胚是这些方法的一个重要优势,因为它们可以生成在几何上能够跨年龄以及与固定的无条件模板或脑图谱明确关联的条件模板。在条件模板生成中使用深度学习为创建针对更复杂的条件参数集(如病理学和人口统计学变量)的模板提供了一个框架,以便于条件脑模板在神经影像学研究中得到更广泛的应用。这可以帮助研究人员和临床医生理解大脑结构如何随时间以及在各种干预下发生变化,最终目标是改善个性化医疗中治疗和干预的校准。实现我们的条件脑模板网络的代码可在以下网址获取:github.com/lwhitbread/deep-diff 。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验