Suppr超能文献

基于回归的配准(RbR):一种用于可解释且灵活的图谱配准的框架。

Registration by Regression (RbR): a framework for interpretable and flexible atlas registration.

作者信息

Gopinath Karthik, Hu Xiaoling, Hoffmann Malte, Puonti Oula, Iglesias Juan Eugenio

机构信息

Massachusetts General Hospital and Harvard Medical School.

Danish Research Centre for Magnetic Resonance, Copenhagen University Hospital.

出版信息

Biomed Image Regist Proc. 2024 Oct;15249:205-215. doi: 10.1007/978-3-031-73480-9_16. Epub 2024 Oct 5.

Abstract

In human neuroimaging studies, atlas registration enables mapping MRI scans to a common coordinate frame, which is necessary to aggregate data from multiple subjects. Machine learning registration methods have achieved excellent speed and accuracy but lack interpretability and flexibility at test time (since their deformation model is fixed). More recently, keypoint-based methods have been proposed to tackle these issues, but their accuracy is still subpar, particularly when fitting nonlinear transforms. Here we propose Registration by Regression (RbR), a novel atlas registration framework that: is highly robust and flexible; can be trained with cheaply obtained data; and operates on a single channel, such that it can also be used as pretraining for other tasks. RbR predicts the () atlas coordinates for every voxel of the input scan (i.e., every voxel is a keypoint), and then uses closed-form expressions to quickly fit transforms using a wide array of possible deformation models, including affine and nonlinear (e.g., Bspline, Demons, invertible diffeomorphic models, etc.). Robustness is provided by the large number of voxels informing the registration and can be further increased by robust estimators like RANSAC. Experiments on independent public datasets show that RbR yields more accurate registration than competing keypoint approaches, over a wide range of deformation models.

摘要

在人类神经成像研究中,图谱配准可将磁共振成像(MRI)扫描映射到一个公共坐标框架,这对于汇总来自多个受试者的数据是必要的。机器学习配准方法已实现了出色的速度和准确性,但在测试时缺乏可解释性和灵活性(因为其变形模型是固定的)。最近,基于关键点的方法已被提出以解决这些问题,但其准确性仍然欠佳,特别是在拟合非线性变换时。在此,我们提出回归配准(RbR),这是一种新颖的图谱配准框架,它:高度稳健且灵活;可以使用廉价获取的数据进行训练;并且在单通道上运行,因此它也可以用作其他任务的预训练。RbR预测输入扫描的每个体素的()图谱坐标(即每个体素都是一个关键点),然后使用闭式表达式通过包括仿射和非线性(例如,B样条、魔鬼模型、可逆微分同胚模型等)在内的多种可能变形模型快速拟合变换。大量告知配准的体素提供了稳健性,并且可以通过如随机抽样一致性(RANSAC)等稳健估计器进一步提高。在独立公共数据集上的实验表明,在广泛的变形模型范围内,RbR比竞争的基于关键点的方法产生更准确的配准。

相似文献

6
Anterior Approach Total Ankle Arthroplasty with Patient-Specific Cut Guides.使用患者特异性截骨导向器的前路全踝关节置换术。
JBJS Essent Surg Tech. 2025 Aug 15;15(3). doi: 10.2106/JBJS.ST.23.00027. eCollection 2025 Jul-Sep.

本文引用的文献

4
TransMorph: Transformer for unsupervised medical image registration.TransMorph:用于无监督医学图像配准的转换器。
Med Image Anal. 2022 Nov;82:102615. doi: 10.1016/j.media.2022.102615. Epub 2022 Sep 14.
7
SynthMorph: Learning Contrast-Invariant Registration Without Acquired Images.SynthMorph:无需获取图像即可学习对比不变配准。
IEEE Trans Med Imaging. 2022 Mar;41(3):543-558. doi: 10.1109/TMI.2021.3116879. Epub 2022 Mar 2.
10
Learning a Probabilistic Model for Diffeomorphic Registration.学习用于可变形配准的概率模型。
IEEE Trans Med Imaging. 2019 Sep;38(9):2165-2176. doi: 10.1109/TMI.2019.2897112. Epub 2019 Feb 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验