Clermont Gilles, Kaplan Vladimir, Moreno Rui, Vincent Jean-Louis, Linde-Zwirble Walter T, Hout Ben Van, Angus Derek C
Room 606B, Scaife Hall, Critical Care Medicine, University of Pittsburgh, 3550 Terrace Street, Pittsburgh, PA 15261, USA.
Intensive Care Med. 2004 Dec;30(12):2237-44. doi: 10.1007/s00134-004-2456-5. Epub 2004 Oct 21.
Existing intensive care unit (ICU) prediction tools forecast single outcomes, (e.g., risk of death) and do not provide information on timing.
To build a model that predicts the temporal patterns of multiple outcomes, such as survival, organ dysfunction, and ICU length of stay, from the profile of organ dysfunction observed on admission.
Dynamic microsimulation of a cohort of ICU patients.
49Forty-nine ICUs in 11 countries.
One thousand four hundred and forty-nine patients admitted to the ICU in May 1995.
None. MODEL CONSTRUCTION: We developed the model on all patients (n=989) from 37 randomly-selected ICUs using daily Sequential Organ Function Assessment (SOFA) scores. We validated the model on all patients (n=460) from the remaining 12 ICUs, comparing predicted-to-actual ICU mortality, SOFA scores, and ICU length of stay (LOS).
In the validation cohort, the predicted and actual mortality were 20.1% (95%CI: 16.2%-24.0%) and 19.9% at 30 days. The predicted and actual mean ICU LOS were 7.7 (7.0-8.3) and 8.1 (7.4-8.8) days, leading to a 5.5% underestimation of total ICU bed-days. The predicted and actual cumulative SOFA scores per patient were 45.2 (39.8-50.6) and 48.2 (41.6-54.8). Predicted and actual mean daily SOFA scores were close (5.1 vs 5.5, P=0.32). Several organ-organ interactions were significant. Cardiovascular dysfunction was most, and neurological dysfunction was least, linked to scores in other organ systems.
Dynamic microsimulation can predict the time course of multiple short-term outcomes in cohorts of critical illness from the profile of organ dysfunction observed on admission. Such a technique may prove practical as a prediction tool that evaluates ICU performance on additional dimensions besides the risk of death.
现有的重症监护病房(ICU)预测工具只能预测单一结果(如死亡风险),无法提供关于时间的信息。
构建一个模型,根据入院时观察到的器官功能障碍情况,预测多种结果的时间模式,如生存、器官功能障碍和ICU住院时长。
对一组ICU患者进行动态微观模拟。
11个国家的49个ICU。
1995年5月入住ICU的1449例患者。
无。模型构建:我们使用每日序贯器官功能评估(SOFA)评分,在来自37个随机选择的ICU的所有患者(n = 989)中开发该模型。我们在其余12个ICU的所有患者(n = 460)中验证该模型,比较预测的与实际的ICU死亡率、SOFA评分和ICU住院时长(LOS)。
在验证队列中,30天时预测的和实际的死亡率分别为20.1%(95%CI:16.2%-24.0%)和19.9%。预测的和实际的平均ICU住院时长分别为7.7(7.0 - 8.3)天和8.1(7.4 - 8.8)天,导致对总ICU床日数低估了5.5%。每位患者预测的和实际的累积SOFA评分为45.2(39.8 - 50.6)和48.2(41.6 - 54.8)。预测的和实际的每日平均SOFA评分接近(5.1对5.5,P = 0.32)。几个器官 - 器官相互作用显著。心血管功能障碍与其他器官系统评分的关联最为密切,而神经功能障碍的关联最少。
动态微观模拟可以根据入院时观察到的器官功能障碍情况,预测危重症患者队列中多种短期结果的时间进程。作为一种预测工具,这种技术除了评估死亡风险外,还可以在其他维度上评估ICU的表现,可能具有实际应用价值。