Suppr超能文献

动态染色质边界界定了爱泼斯坦-巴尔病毒的潜伏控制区。

Dynamic chromatin boundaries delineate a latency control region of Epstein-Barr virus.

作者信息

Chau Charles M, Lieberman Paul M

机构信息

The Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104, USA.

出版信息

J Virol. 2004 Nov;78(22):12308-19. doi: 10.1128/JVI.78.22.12308-12319.2004.

Abstract

The oncogenic potential of latent Epstein-Barr virus (EBV) can be regulated by epigenetic factors controlling LMP1 and EBNA2 gene transcription. The EBV latency control region (LCR) constitutes approximately 12 kb of viral sequence spanning the divergent promoters of LMP1 and EBNA2 and encompasses the EBV latent replication origin OriP and RNA polymerase III-transcribed EBV-encoded RNA genes. We have used the chromatin immunoprecipitation assay to examine the chromatin architecture of the LCR in different types of EBV latency programs. We have found that histone H3 K4 methylation (H3mK4) was enriched throughout a large domain that extended from internal repeat 1 (IR1) to the terminal repeat in type III latency where EBNA2 and LMP1 genes are expressed. In type I latency where EBNA2 and LMP1 genes are transcriptionally silent, the H3mK4 domain contracts and does not enter the EBNA2 or LMP1 promoters. In contrast, histone H3 K9 methylation (H3mK9), associated with silent heterochromatin, was enriched in the EBNA2 and LMP1 upstream control regions in type I but not type III cells. MTA [5'-deoxy-5'(methylthio)adenosine], a pharmacological inhibitor of protein methylation, globally reduced histone H3mK4 and inhibited EBNA2 transcription in type III cells. 5'-Azacytidine, an inhibitor of DNA methylation that derepresses EBNA2 transcription in type I latency, caused H3mK4 expansion and a corresponding loss of H3mK9 at IR1. The chromatin boundary protein and transcription repressor CCCTC-binding factor was enriched at the EBNA2 transcription control region in type I but not type III cells. We also present evidence that OriP binding factors EBNA1 and ORC2 can interact with sequences outside of OriP including a region within IR1 that may influence EBNA2 transcription status. These results indicate that types I and III latency programs have distinct histone methylation patterns in the LCR and suggest that chromatin architecture coordinates gene expression of LMP1 and EBNA2.

摘要

潜伏性爱泼斯坦-巴尔病毒(EBV)的致癌潜力可由控制LMP1和EBNA2基因转录的表观遗传因素调节。EBV潜伏控制区(LCR)由约12 kb的病毒序列组成,跨越LMP1和EBNA2的不同启动子,包含EBV潜伏复制起点OriP和RNA聚合酶III转录的EBV编码RNA基因。我们利用染色质免疫沉淀试验检测了不同类型EBV潜伏程序中LCR的染色质结构。我们发现,在III型潜伏中,组蛋白H3 K4甲基化(H3mK4)在从内部重复序列1(IR1)延伸至末端重复序列的大区域内富集,此时EBNA2和LMP1基因表达。在I型潜伏中,EBNA2和LMP1基因转录沉默,H3mK4结构域收缩,不进入EBNA2或LMP1启动子。相反,与沉默异染色质相关的组蛋白H3 K9甲基化(H3mK9)在I型而非III型细胞的EBNA2和LMP1上游控制区富集。MTA[5'-脱氧-5'(甲硫基)腺苷],一种蛋白质甲基化的药理学抑制剂,在III型细胞中整体降低组蛋白H3mK4并抑制EBNA2转录。5'-氮杂胞苷,一种DNA甲基化抑制剂,可在I型潜伏中解除对EBNA2转录的抑制,导致H3mK4扩展以及IR1处H3mK9相应减少。染色质边界蛋白和转录抑制因子CCCTC结合因子在I型而非III型细胞的EBNA2转录控制区富集。我们还提供证据表明,OriP结合因子EBNA1和ORC2可与OriP以外的序列相互作用,包括IR1内可能影响EBNA2转录状态的区域。这些结果表明,I型和III型潜伏程序在LCR中具有不同的组蛋白甲基化模式,并提示染色质结构协调LMP1和EBNA2的基因表达。

相似文献

1
Dynamic chromatin boundaries delineate a latency control region of Epstein-Barr virus.
J Virol. 2004 Nov;78(22):12308-19. doi: 10.1128/JVI.78.22.12308-12319.2004.
2
Chromatin profiling of Epstein-Barr virus latency control region.
J Virol. 2007 Jun;81(12):6389-401. doi: 10.1128/JVI.02172-06. Epub 2007 Apr 4.
3
Regulation of Epstein-Barr virus latency type by the chromatin boundary factor CTCF.
J Virol. 2006 Jun;80(12):5723-32. doi: 10.1128/JVI.00025-06.
9
Epstein-Barr virus infection and its gene expression in gastric lymphoma of mucosa-associated lymphoid tissue.
J Med Virol. 1998 Dec;56(4):342-50. doi: 10.1002/(sici)1096-9071(199812)56:4<342::aid-jmv10>3.0.co;2-p.

引用本文的文献

1
Epigenetic and epitranscriptomic regulation during oncogenic -herpesvirus infection.
Front Microbiol. 2025 Jan 7;15:1484455. doi: 10.3389/fmicb.2024.1484455. eCollection 2024.
2
HIV-induced RSAD2/Viperin supports sustained infection of monocyte-derived macrophages.
J Virol. 2024 Oct 22;98(10):e0086324. doi: 10.1128/jvi.00863-24. Epub 2024 Sep 11.
3
Viral remodeling of the 4D nucleome.
Exp Mol Med. 2024 Apr;56(4):799-808. doi: 10.1038/s12276-024-01207-0. Epub 2024 Apr 25.
5
Regulation of EBNA1 protein stability and DNA replication activity by PLOD1 lysine hydroxylase.
PLoS Pathog. 2023 Jun 1;19(6):e1010478. doi: 10.1371/journal.ppat.1010478. eCollection 2023 Jun.
8
When 3D genome technology meets viral infection, including SARS-CoV-2.
J Med Virol. 2022 Dec;94(12):5627-5639. doi: 10.1002/jmv.28040. Epub 2022 Aug 10.
9
The roles of DNA methylation on the promotor of the Epstein-Barr virus (EBV) gene and the genome in patients with EBV-associated diseases.
Appl Microbiol Biotechnol. 2022 Jun;106(12):4413-4426. doi: 10.1007/s00253-022-12029-3. Epub 2022 Jun 28.
10
Epigenetic Landscape of HIV-1 Infection in Primary Human Macrophage.
J Virol. 2022 Apr 13;96(7):e0016222. doi: 10.1128/jvi.00162-22. Epub 2022 Mar 23.

本文引用的文献

1
Inhibition of Epstein-Barr virus-induced growth proliferation by a nuclear antigen EBNA2-TAT peptide.
Proc Natl Acad Sci U S A. 2004 Mar 30;101(13):4625-30. doi: 10.1073/pnas.0306482101. Epub 2004 Mar 19.
2
Persistence of the Epstein-Barr virus and the origins of associated lymphomas.
N Engl J Med. 2004 Mar 25;350(13):1328-37. doi: 10.1056/NEJMra032015.
3
FGF2-induced chromatin remodeling regulates CNTF-mediated gene expression and astrocyte differentiation.
Nat Neurosci. 2004 Mar;7(3):229-35. doi: 10.1038/nn1192. Epub 2004 Feb 8.
4
Partitioning and plasticity of repressive histone methylation states in mammalian chromatin.
Mol Cell. 2003 Dec;12(6):1577-89. doi: 10.1016/s1097-2765(03)00477-5.
5
Maintenance of heterochromatin by RNA interference of tandem repeats.
Nat Genet. 2003 Nov;35(3):213-4. doi: 10.1038/ng1252.
6
Host cell-dependent expression of latent Epstein-Barr virus genomes: regulation by DNA methylation.
Adv Cancer Res. 2003;89:133-56. doi: 10.1016/s0065-230x(03)01004-2.
7
Histone lysine methylation: a signature for chromatin function.
Trends Genet. 2003 Nov;19(11):629-39. doi: 10.1016/j.tig.2003.09.007.
8
EBNA1 efficiently assembles on chromatin containing the Epstein-Barr virus latent origin of replication.
Virology. 2003 Oct 25;315(2):398-408. doi: 10.1016/s0042-6822(03)00561-0.
9
Complex protein-DNA dynamics at the latent origin of DNA replication of Epstein-Barr virus.
J Cell Sci. 2003 Oct 1;116(Pt 19):3971-84. doi: 10.1242/jcs.00708.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验