Suppr超能文献

使用WLSMV估计量对有序变量应用结构方程模型分析多特质-多方法数据:获得有效结果需要多大样本量?

Analysing multitrait-multimethod data with structural equation models for ordinal variables applying the WLSMV estimator: what sample size is needed for valid results?

作者信息

Nussbeck Fridtjof W, Eid Michael, Lischetzke Tanja

机构信息

Faculty of Psychology and Educational Sciences, University of Geneva, Switzerland.

出版信息

Br J Math Stat Psychol. 2006 May;59(Pt 1):195-213. doi: 10.1348/000711005X67490.

Abstract

Convergent and discriminant validity of psychological constructs can best be examined in the framework of multitrait-multimethod (MTMM) analysis. To gain information at the level of single items, MTMM models for categorical variables have to be applied. The CTC(M-1) model is presented as an example of an MTMM model for ordinal variables. Based on an empirical application of the CTC(M-1) model, a complex simulation study was conducted to examine the sample size requirements of the robust weighted least squares mean- and variance-adjusted chi(2) test of model fit (WLSMV estimator) implemented in Mplus. In particular, the simulation study analysed the chi(2) approximation, the parameter estimation bias, the standard error bias, and the reliability of the WLSMV estimator depending on the varying number of items per trait-method unit (ranging from 2 to 8) and varying sample sizes (250, 500, 750, and 1000 observations). The results showed that the WLSMV estimator provided a good -- albeit slightly liberal -- chi(2) approximation and stable and reliable parameter estimates for models of reasonable complexity (2-4 items) and small sample sizes (at least 250 observations). When more complex models with 5 or more items were analysed, larger sample sizes of at least 500 observations were needed. The most complex model with 9 trait-method units and 8 items (72 observed variables) requires sample sizes of at least 1000 observations.

摘要

心理构念的收敛效度和区分效度最好在多特质-多方法(MTMM)分析框架中进行检验。为了在单个项目层面获取信息,必须应用用于分类变量的MTMM模型。作为用于有序变量的MTMM模型的一个示例,提出了CTC(M-1)模型。基于CTC(M-1)模型的实证应用,进行了一项复杂的模拟研究,以检验Mplus中实现的稳健加权最小二乘均值和方差调整卡方模型拟合检验(WLSMV估计器)的样本量要求。具体而言,模拟研究分析了卡方近似、参数估计偏差、标准误差偏差以及WLSMV估计器的可靠性,这些取决于每个特质-方法单元的项目数量变化(范围从2到8)和样本量变化(250、500、750和1000个观测值)。结果表明,对于合理复杂度(2-4个项目)和小样本量(至少250个观测值)的模型,WLSMV估计器提供了良好的——尽管略为宽松的——卡方近似以及稳定可靠的参数估计。当分析具有5个或更多项目的更复杂模型时,需要至少500个观测值的更大样本量。具有9个特质-方法单元和8个项目(72个观测变量)的最复杂模型需要至少1000个观测值的样本量。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验